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JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)
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JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node
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936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2020:
#1 Europe
#7 World
#4* Top/Green500
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https://www.top500.org/lists/top500/2021/11/


JURECA DC – Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2× 64 cores)
192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network
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GPU Architecture



Status Quo Across Architectures
Performance
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Status Quo Across Architectures
Memory Bandwidth
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CPU vs. GPU
Amatter of specialties

Transporting one
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s
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SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if
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A100 vs H100
Comparison of current vs. next generation

A100 H100
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs



Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math
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cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas
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cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);
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cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y
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Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Finalize
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Programming GPUs
Directives



GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug
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OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 1 June 2023 Slide 22 41



OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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Programming GPUs
CUDA C/C++



Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm
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Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();
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cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish
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Programming GPUs
Performance Analysis



GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

compute-sanitizer Check memory accesses, race conditions, …
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler
AMD
rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs
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Nsight Systems
CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu

0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red
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Nsight Systems
GUI
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Nsight Compute
GUI



Programming GPUs
Advanced Topics



Advanced Topics
Somuchmore interesting things to show!

Optimize memory transfers to reduce overhead
Optimize applications for GPU architecture
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Tensor Cores for Deep Learning
Libraries, Abstractions: Kokkos, Alpaka, Futhark, HIP, SYCL, C++AMP, C++ pSTL,…
Usemultiple GPUs

On one node
Across many nodes→MPI

…
Some of that: Addressed at dedicated training courses
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Using GPUs on JSC Systems



Compiling

CUDA Module: module load CUDA/11.7
Compile: nvcc file.cu
Example cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/lib64
-lcublas -lcudart

OpenACC Module: module load NVHPC/23.1
Compile: nvc++ -acc=gpu file.cpp

MPI CUDA-aware MPIs (with direct Device-Device transfers)
ParaStationMPI module load ParaStationMPI/5.8.0-1 MPI-settings/CUDA

OpenMPI module load OpenMPI/4.1.4 MPI-settings/CUDA
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Running
Dedicated GPU partitions
JUWELS

--partition=gpus 46 nodes (Job limits: ≤1 d)
--partition=develgpus 10 nodes (Job limits: ≤2 h,≤ 2 nodes)

JUWELS Booster
--partition=booster 926 nodes

--partition=develbooster 10 nodes (Job limits: ≤1 d,≤ 2 nodes)
JURECA DC

--partition=dc-gpu 192 nodes
--partition=dc-gpu-devel 12 nodes

Needed: Resource configuration with --gres=gpu:4

→ See online documentation
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Running
JUWELS Booster Topology

JUWELS Booster: NPS-4 (in total: 8 NUMA
Domains)
Not all have GPU or HCA affinity!

Network is structured into two levels:
In-Cell and Inter-Cell (DragonFly+
network)

→ Documentation:
apps.fz-juelich.de/jsc/hps/juwels/
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Example

16 tasks in total, running on 4 nodes
Per node: 4 GPUs
#!/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=4
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog
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Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!

Training courses by JSC next year
See online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
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Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC next year
See online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Thank you

for your att
ention!

a.herten@fz-juelich.de
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Glossary I

AMD Manufacturer of CPUs and GPUs. 52, 53, 54, 55, 56, 57, 88, 90
Ampere GPU architecture from NVIDIA (announced 2019). 4, 5, 6

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 52, 53, 54, 55, 56, 57

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 77, 90

HIP GPU programmingmodel by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
52, 53, 54, 55, 56, 57
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Glossary II

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 2, 82, 83, 84, 85, 89

JURECA Amulti-purpose supercomputer at JSC. 6
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 3, 4, 5, 78

MPI The Message Passing Interface, a API definition for multi-node computing. 75, 77

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 26, 27, 28, 52, 53, 54, 55, 56, 57,
70, 82, 83, 84, 85, 88, 90

OpenACC Directive-based programming, primarily for many-core machines. 46, 47, 48, 49,
50, 77
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Glossary III

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 52, 53, 54, 55, 56,
57

OpenMP Directive-based programming, primarily for multi-threadedmachines. 46, 47,
48, 49, 50

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 52, 53, 54, 55, 56, 57

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 34, 67, 68

Tesla The GPU product line for general purpose computing computing of NVIDIA. 3
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Glossary IV

CPU Central Processing Unit. 3, 6, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 34,
52, 53, 54, 55, 56, 57, 88, 90

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 33, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54,
55, 56, 57, 68, 69, 70, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 89, 90

SIMD Single Instruction, Multiple Data. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
SIMT Single Instruction, Multiple Threads. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28
SM Streaming Multiprocessor. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

SMT Simultaneous Multithreading. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
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