
GPU ACCELERATORS AT JSC
SUPERCOMPUTING INTRODUCTION COURSE
1 June 2023 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline

GPUs at JSC
JUWELS

JUWELS Cluster
JUWELS Booster

JURECA DC
GPU Architecture

Empirical Motivation
Comparisons
GPU Architecture
Summary

Programming GPUs
Libraries
Directives
CUDA C/C++
Performance Analysis
Advanced Topics

Advanced Topics

Member of the Helmholtz Association 1 June 2023 Slide 1 41

JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)

Member of the Helmholtz Association 1 June 2023 Slide 2 41

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Member of the Helmholtz Association 1 June 2023 Slide 3 41

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2020:
#1 Europe
#7 World
#4* Top/Green500

Member of the Helmholtz Association 1 June 2023 Slide 3 41

https://www.top500.org/lists/top500/2021/11/

JURECA DC – Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2× 64 cores)
192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network

Member of the Helmholtz Association 1 June 2023 Slide 4 41

GPU Architecture

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016 2018 2020

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

MI100

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060
Tesla

 C
2050 Tesla

 M
2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100 Tesla
 V

100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Performance, Double Precision

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 1 June 2023 Slide 6 41

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016 2018 2020

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970 HD 7970 G
Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

MI25

MI60 MI100

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4
Platin

um 8180
Platin

um 9282

Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Memory Bandwidth Comparison

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 1 June 2023 Slide 6 41

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 1 June 2023 Slide 7 41

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 1 June 2023 Slide 7 41

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 1 June 2023 Slide 8 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s
DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 1 June 2023 Slide 9 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Multiprocessor

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 1 June 2023 Slide 10 41

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 1 June 2023 Slide 11 41

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 1 June 2023 Slide 11 41

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 1 June 2023 Slide 11 41

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 1 June 2023 Slide 12 41

Programming GPUs

Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 1 June 2023 Slide 14 41

http://www.netlib.org/lapack/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 1 June 2023 Slide 15 41

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 1 June 2023 Slide 15 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 1 June 2023 Slide 16 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 1 June 2023 Slide 16 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 1 June 2023 Slide 16 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 1 June 2023 Slide 16 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 1 June 2023 Slide 16 41

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 1 June 2023 Slide 17 41

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 1 June 2023 Slide 18 41

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 1 June 2023 Slide 19 41

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 1 June 2023 Slide 21 41

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 1 June 2023 Slide 21 41

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 1 June 2023 Slide 21 41

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 1 June 2023 Slide 22 41

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 1 June 2023 Slide 22 41

Programming GPUs
CUDA C/C++

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 1 June 2023 Slide 24 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 1 June 2023 Slide 25 41

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 1 June 2023 Slide 26 41

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Member of the Helmholtz Association 1 June 2023 Slide 27 41

Programming GPUs
Performance Analysis

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

compute-sanitizer Check memory accesses, race conditions, …
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler
AMD
rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

Member of the Helmholtz Association 1 June 2023 Slide 29 41

Nsight Systems
CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu

0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red

Member of the Helmholtz Association 1 June 2023 Slide 30 41

Nsight Systems
GUI

Member of the Helmholtz Association 1 June 2023 Slide 31 41

Nsight Compute
GUI

Programming GPUs
Advanced Topics

Advanced Topics
Somuchmore interesting things to show!

Optimize memory transfers to reduce overhead
Optimize applications for GPU architecture
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Tensor Cores for Deep Learning
Libraries, Abstractions: Kokkos, Alpaka, Futhark, HIP, SYCL, C++AMP, C++ pSTL,…
Usemultiple GPUs

On one node
Across many nodes→MPI

…
Some of that: Addressed at dedicated training courses

Member of the Helmholtz Association 1 June 2023 Slide 34 41

https://github.com/kokkos/kokkos/
https://github.com/ComputationalRadiationPhysics/alpaka
https://futhark-lang.org/
https://github.com/ROCm-Developer-Tools/HIP
https://www.khronos.org/sycl/
https://en.wikipedia.org/wiki/C%2B%2B_AMP
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Using GPUs on JSC Systems

Compiling

CUDA Module: module load CUDA/11.7
Compile: nvcc file.cu
Example cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/lib64
-lcublas -lcudart

OpenACC Module: module load NVHPC/23.1
Compile: nvc++ -acc=gpu file.cpp

MPI CUDA-aware MPIs (with direct Device-Device transfers)
ParaStationMPI module load ParaStationMPI/5.8.0-1 MPI-settings/CUDA

OpenMPI module load OpenMPI/4.1.4 MPI-settings/CUDA

Member of the Helmholtz Association 1 June 2023 Slide 36 41

Running
Dedicated GPU partitions
JUWELS

--partition=gpus 46 nodes (Job limits: ≤1 d)
--partition=develgpus 10 nodes (Job limits: ≤2 h,≤ 2 nodes)

JUWELS Booster
--partition=booster 926 nodes

--partition=develbooster 10 nodes (Job limits: ≤1 d,≤ 2 nodes)
JURECA DC

--partition=dc-gpu 192 nodes
--partition=dc-gpu-devel 12 nodes

Needed: Resource configuration with --gres=gpu:4

→ See online documentation

Member of the Helmholtz Association 1 June 2023 Slide 37 41

https://apps.fz-juelich.de/jsc/hps/juwels/gpu-computing.html

Running
JUWELS Booster Topology

JUWELS Booster: NPS-4 (in total: 8 NUMA
Domains)
Not all have GPU or HCA affinity!

Network is structured into two levels:
In-Cell and Inter-Cell (DragonFly+
network)

→ Documentation:
apps.fz-juelich.de/jsc/hps/juwels/

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23

66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

N 1 N 2 N 3 N 4 N 5 N 6 ... N 48

L1 1 ... L1 10

L2 1 ... L2 10

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19

U

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19

U

1

2

3

4
56

7

8

9

10

11

12

13

14

15 16
17

18

19

20

Cluster

×20

Member of the Helmholtz Association 1 June 2023 Slide 38 41

https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html

Example

16 tasks in total, running on 4 nodes
Per node: 4 GPUs
#!/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=4
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog

Member of the Helmholtz Association 1 June 2023 Slide 39 41

Conclusion

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!

Training courses by JSC next year
See online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Member of the Helmholtz Association 1 June 2023 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC next year
See online documentation and sc@fz-juelich.de

Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Member of the Helmholtz Association 1 June 2023 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC next year
See online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Member of the Helmholtz Association 1 June 2023 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC next year
See online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 1 June 2023 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
mailto:a.herten@fz-juelich.de

Appendix

Appendix
Glossary
References

Member of the Helmholtz Association 1 June 2023 Slide 2 8

Glossary I

AMD Manufacturer of CPUs and GPUs. 52, 53, 54, 55, 56, 57, 88, 90
Ampere GPU architecture from NVIDIA (announced 2019). 4, 5, 6

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 52, 53, 54, 55, 56, 57

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 77, 90

HIP GPU programmingmodel by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
52, 53, 54, 55, 56, 57

Member of the Helmholtz Association 1 June 2023 Slide 3 8

Glossary II

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 2, 82, 83, 84, 85, 89

JURECA Amulti-purpose supercomputer at JSC. 6
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 3, 4, 5, 78

MPI The Message Passing Interface, a API definition for multi-node computing. 75, 77

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 26, 27, 28, 52, 53, 54, 55, 56, 57,
70, 82, 83, 84, 85, 88, 90

OpenACC Directive-based programming, primarily for many-core machines. 46, 47, 48, 49,
50, 77

Member of the Helmholtz Association 1 June 2023 Slide 4 8

Glossary III

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 52, 53, 54, 55, 56,
57

OpenMP Directive-based programming, primarily for multi-threadedmachines. 46, 47,
48, 49, 50

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 52, 53, 54, 55, 56, 57

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 34, 67, 68

Tesla The GPU product line for general purpose computing computing of NVIDIA. 3

Member of the Helmholtz Association 1 June 2023 Slide 5 8

Glossary IV

CPU Central Processing Unit. 3, 6, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 34,
52, 53, 54, 55, 56, 57, 88, 90

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 33, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54,
55, 56, 57, 68, 69, 70, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 89, 90

SIMD Single Instruction, Multiple Data. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
SIMT Single Instruction, Multiple Threads. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28
SM Streaming Multiprocessor. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

SMT Simultaneous Multithreading. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

Member of the Helmholtz Association 1 June 2023 Slide 6 8

References I

[2] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 8, 9).

[6] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 37–41).

Member of the Helmholtz Association 1 June 2023 Slide 7 8

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

[3] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 10, 11).

[4] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 10, 11).

[5] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

Member of the Helmholtz Association 1 June 2023 Slide 8 8

https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

	Outline
	*gpu at *jsc
	JUWELS
	JUWELS Cluster
	JUWELS Booster

	JURECA DC

	*gpu Architecture
	Empirical Motivation
	Comparisons
	GPU Architecture
	Summary

	Programming GPUs
	Libraries
	Directives
	CUDA C/C++
	Performance Analysis
	Advanced Topics

	Advanced Topics
	Using GPUs on JSC Systems
	Compiling
	Resource Allocation

	Conclusion
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References
	References

