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CONTINUOUS INTEGRATION

• Automized jobs that run regularly (“continuously”) at your code (e.g. at every push; every day; …)

• Continuous Testing as part of Continuous Integration

• Other parts of CI/CD (Continuous Integration / Continuous Deployment) not focus of this talk
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What is it?



CONTINUOUS INTEGRATION

Automizing has multiple advantages:

• Identical for everyone (regardless, who pushes to the server)

• More reproducible

• Less error-prone

• Cannot be forgotten to run
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Why is it important?



CONTINUOUS INTEGRATION

• Compiling: Creating an executable version of your code (if required)

• Linting: Static analysis of your code. Often fast, as no compilation / execution is needed. Can find pitfalls.

• Auto-Formatting / Style checking: Check whether the code satisfies a certain style. This increases readability 

and maintainability across developers (and maybe your future self)
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Other parts of CI apart from testing
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SCOPES OF TESTS
Why testing?

Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Reason for testing:

è Finding bugs

Reason for finding bugs:
 è Making the user happy (generally) / making the results reproducible (in science)

So what makes a user happy / the results reproducible?

Test added è Test fails è Bug reported è Bug fixed



SCOPES OF TESTS

E2E 
test

Integration 
test

Unit test
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Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Unit test End-to-End test

Fast

Reliable

Isolates failures

Simulates a
real user 70%

20%

10%



SCOPES OF TESTS

• Idea: Test a single function

• Fast execution & easy to locate bugs

• Ideally hermetic tests

• Most of the tests should be Unit tests (~70%)
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Unit tests

E2E test

Integration 
test

Unit test



SCOPES OF TESTS

• Idea: Test combination / interaction of functions (usually only a few; often only 2)

• Slower execution compared to Unit tests and harder to use to localize bugs

• Either using Mock-ups or real other components

• Can induce flakiness (as relying on other components; network; …)

• Should be fewer tests than unit-tests (~20%)
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Integration tests

E2E test

Integration 
test

Unit test



SCOPES OF TESTS

• Idea: Test whole Software/system

• Even slower execution compared to Unit and Integration tests

• Harder to localize bugs

• Not hermetic (by definition)

• Should be the fewest tests (~10%)
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End-to-End tests

E2E test

Integration 
test

Unit test
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STRATEGIES FOR TESTS

• What it is:

• Classic approach

• Providing input and expected output 
& comparing real to expected output

• When to use it:

• To test specific cases (e.g. examples)
• To test complex cases when it is hard to specify all 

details (e.g. complex input files)
• Downsides:

• Limited test scope

• When using files: watch out for timestamps

• How to use it:

• Prepare input and output (variables or files)

• Start function with given input
• Check if created output equals expected output

• Examples:

• assert sum(2,3)==5
• create_db()
assert new.db == prepared_example.db
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Golden Master testing



STRATEGIES FOR TESTS

• What it is:

• Check not for specific output, but for properties of 
the output

• When to use it:

• To generalize test cases

• To find edge-cases
• Downsides:

• Difficult when creating complex data-structures
• An addition rather than replacement for golden 

master tests (so more effort, but not more line 
coverage)

• How to use it:

• Define properties of input

• Start function with (automatically) created input
• Check if output satisfies checks

• Examples:

• @given(list(characters()))
def TestAmazingSort(input):

output = AmazingSort(input)
assert set(input) == set(ouput)
assert isSorted(output)
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Property based testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/QuickCheck



STRATEGIES FOR TESTS

• What it is:

• Fuzzy testing throws arbitrary input at your function 
to see if the function returns unexpected errors

• Similar to property based testing, but normally 
wider input and less precise output check

• When to use it:
• To test functions for robustness against user- or 

interaction errors
• To find edge cases / strange bugs nobody 

anticipated and tested for

• Downsides:

• Rather a smoke test

• Not testing for correctness, but only for failures
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Fuzzy testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)



STRATEGIES FOR TESTS

• What it is:

• “Mutation testing is a technique for systematically 
mutating source code in order to validate test 
suites. It makes small changes to a program's 
source code and then runs a test suite; if the test 
suite ever succeeds on mutated code then a flag is 
raised” (https://www.oreilly.com/pub/e/3560)

• “Essentially, mutation testing is a test of the alarm 
system created by the unit tests.” 
(mutatest.readthedocs.io/en/latest/install.html#mut
ation-trial-process)

• What it does it:

• Alter your code and check if tests now fail

• When to use it:

• When added many (unit) tests to have high 
coverage

• When unsure how well the tests actually test the 
code

• To see if tests are sensitive enough to detect 
(unintended) changes in the code

• Packages to use (not tested by me):
• Mutatest: https://mutatest.readthedocs.io/en/latest/

(python)

• Mutmut: https://github.com/boxed/mutmut (python)
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Mutation testing

https://www.oreilly.com/pub/e/3560
https://mutatest.readthedocs.io/en/latest/
https://github.com/boxed/mutmut


SUMMARY

Continuous 
Integration

• Easier than 
manual

• More 
reproducible

Scopes of tests

• Focus on Unit 
Tests

• A few 
Integration 
Tests

• Very few End-
to-End Tests

Strategies for 
tests

• Compare 
precise results

• Check 
properties

• Test for raised 
errors

• How precise 
are your tests
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SUMMARY
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Thank you for your attention!
I’m happy to answer questions!

Feel free to reach me: j.fritz@fz-juelich.de


