
TESTING

24.10.2023 I JAKOB FRITZ I TIME-X HACKATHON DARMSTADT

Unit Tests and Beyond

OVERVIEW

Continuous
Integration

• What is CI?
• Why is CI

important?
• Other parts of

CI apart from
testing

Scopes of tests

• Unit Tests
• Integration

Tests
• End-to-End

Tests

Strategies for
tests

• Golden
Master tests

• Property
based testing

• Fuzzy testing
• Mutation

testing

24. October 2023 Page 2

CONTINUOUS INTEGRATION

• Automized jobs that run regularly (“continuously”) at your code (e.g. at every push; every day; …)

• Continuous Testing as part of Continuous Integration

• Other parts of CI/CD (Continuous Integration / Continuous Deployment) not focus of this talk

24. October 2023 Page 3

What is it?

CONTINUOUS INTEGRATION

Automizing has multiple advantages:

• Identical for everyone (regardless, who pushes to the server)

• More reproducible

• Less error-prone

• Cannot be forgotten to run

24. October 2023 Page 4

Why is it important?

CONTINUOUS INTEGRATION

• Compiling: Creating an executable version of your code (if required)

• Linting: Static analysis of your code. Often fast, as no compilation / execution is needed. Can find pitfalls.

• Auto-Formatting / Style checking: Check whether the code satisfies a certain style. This increases readability

and maintainability across developers (and maybe your future self)

24. October 2023 Page 5

Other parts of CI apart from testing

OVERVIEW

Continuous
Integration

• What is CI?
• Why is CI

important?
• Other parts of

CI apart from
testing

Scopes of tests

• Unit Tests
• Integration

Tests
• End-to-End

Tests

Strategies for
tests

• Golden
Master tests

• Property
based testing

• Fuzzy testing
• Mutation

testing

24. October 2023 Page 6

SCOPES OF TESTS
Why testing?

Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Reason for testing:

è Finding bugs

Reason for finding bugs:
 è Making the user happy (generally) / making the results reproducible (in science)

So what makes a user happy / the results reproducible?

Test added è Test fails è Bug reported è Bug fixed

SCOPES OF TESTS

E2E
test

Integration
test

Unit test

24. October 2023 Page 8

Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Unit test End-to-End test

Fast

Reliable

Isolates failures

Simulates a
real user 70%

20%

10%

SCOPES OF TESTS

• Idea: Test a single function

• Fast execution & easy to locate bugs

• Ideally hermetic tests

• Most of the tests should be Unit tests (~70%)

24. October 2023 Page 9

Unit tests

E2E test

Integration
test

Unit test

SCOPES OF TESTS

• Idea: Test combination / interaction of functions (usually only a few; often only 2)

• Slower execution compared to Unit tests and harder to use to localize bugs

• Either using Mock-ups or real other components

• Can induce flakiness (as relying on other components; network; …)

• Should be fewer tests than unit-tests (~20%)

24. October 2023 Page 10

Integration tests

E2E test

Integration
test

Unit test

SCOPES OF TESTS

• Idea: Test whole Software/system

• Even slower execution compared to Unit and Integration tests

• Harder to localize bugs

• Not hermetic (by definition)

• Should be the fewest tests (~10%)

24. October 2023 Page 11

End-to-End tests

E2E test

Integration
test

Unit test

OVERVIEW

Continuous
Integration

• What is CI?
• Why is CI

important?
• Other parts of

CI apart from
testing

Scopes of tests

• Unit Tests
• Integration

Tests
• End-to-End

Tests

Strategies for
tests

• Golden
Master tests

• Property
based testing

• Fuzzy testing
• Mutation

testing

24. October 2023 Page 12

STRATEGIES FOR TESTS

• What it is:

• Classic approach

• Providing input and expected output
& comparing real to expected output

• When to use it:

• To test specific cases (e.g. examples)
• To test complex cases when it is hard to specify all

details (e.g. complex input files)
• Downsides:

• Limited test scope

• When using files: watch out for timestamps

• How to use it:

• Prepare input and output (variables or files)

• Start function with given input
• Check if created output equals expected output

• Examples:

• assert sum(2,3)==5
• create_db()
assert new.db == prepared_example.db

24. October 2023 Page 13

Golden Master testing

STRATEGIES FOR TESTS

• What it is:

• Check not for specific output, but for properties of
the output

• When to use it:

• To generalize test cases

• To find edge-cases
• Downsides:

• Difficult when creating complex data-structures
• An addition rather than replacement for golden

master tests (so more effort, but not more line
coverage)

• How to use it:

• Define properties of input

• Start function with (automatically) created input
• Check if output satisfies checks

• Examples:

• @given(list(characters()))
def TestAmazingSort(input):

output = AmazingSort(input)
assert set(input) == set(ouput)
assert isSorted(output)

24. October 2023 Page 14

Property based testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/QuickCheck

STRATEGIES FOR TESTS

• What it is:

• Fuzzy testing throws arbitrary input at your function
to see if the function returns unexpected errors

• Similar to property based testing, but normally
wider input and less precise output check

• When to use it:
• To test functions for robustness against user- or

interaction errors
• To find edge cases / strange bugs nobody

anticipated and tested for

• Downsides:

• Rather a smoke test

• Not testing for correctness, but only for failures

24. October 2023 Page 15

Fuzzy testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)

STRATEGIES FOR TESTS

• What it is:

• “Mutation testing is a technique for systematically
mutating source code in order to validate test
suites. It makes small changes to a program's
source code and then runs a test suite; if the test
suite ever succeeds on mutated code then a flag is
raised” (https://www.oreilly.com/pub/e/3560)

• “Essentially, mutation testing is a test of the alarm
system created by the unit tests.”
(mutatest.readthedocs.io/en/latest/install.html#mut
ation-trial-process)

• What it does it:

• Alter your code and check if tests now fail

• When to use it:

• When added many (unit) tests to have high
coverage

• When unsure how well the tests actually test the
code

• To see if tests are sensitive enough to detect
(unintended) changes in the code

• Packages to use (not tested by me):
• Mutatest: https://mutatest.readthedocs.io/en/latest/

(python)

• Mutmut: https://github.com/boxed/mutmut (python)

24. October 2023 Page 16

Mutation testing

https://www.oreilly.com/pub/e/3560
https://mutatest.readthedocs.io/en/latest/
https://github.com/boxed/mutmut

SUMMARY

Continuous
Integration

• Easier than
manual

• More
reproducible

Scopes of tests

• Focus on Unit
Tests

• A few
Integration
Tests

• Very few End-
to-End Tests

Strategies for
tests

• Compare
precise results

• Check
properties

• Test for raised
errors

• How precise
are your tests

24. October 2023 Page 17

SUMMARY

24. October 2023 Page 18

Thank you for your attention!
I’m happy to answer questions!

Feel free to reach me: j.fritz@fz-juelich.de

