
BATCH USAGE ON JSC
Introduction to Slurm

Nov 2023 | Chrysovalantis Paschoulas <c.paschoulas@fz-juelich.de> | HPCCDSS @ JSC

Member of Helmholtz Association

Batch System Concepts
● Resource Manager is the software responsible for managing the resources of a cluster, usually

controlled by a scheduler.

▸ It manages resources like tasks, nodes, CPUs, memory, network, etc.

▸ It handles the execution of the jobs on the compute nodes.

▸ It makes sure that jobs are not overlapping on the resources and does the cleaning.

● Scheduler is the software that controls user's jobs on a cluster according to policies. It receives

and handles jobs from the users and controls the resource manager. It offers many features like:

▸ Partitions, queues and QoS to control jobs according to policies/limits.

▸ Scheduling mechanisms (backfill, fifo, etc).

▸ Interfaces for defining workflows (jobscripts) or job dependencies and commands for

managing the jobs (submit, cancel, etc).

● Batch-System/Workload-Manager is the combination of a scheduler and a resource manager. It

combines all the features of these two parts in an efficient way.

Member of Helmholtz Association 2

JSC Batch Model
● Job scheduling according to priorities. Jobs with the highest priorities will be scheduled next.
● Backfilling scheduling algorithm. The scheduler checks the queue and may schedule jobs with

lower priorities that can fit in the gap created by freeing resources for the next highest priority
jobs.

● No node-sharing. The smallest allocation for jobs is one compute node. Running jobs do not
disturb each other.

● For each project we create a Unix-group. Each real person has a unique Unix-user account that
can be member of multiple projects/Unix-groups. A project can have one or more CPU-Quotas
(contingent budgets which map to Slurm Accounts in SlurmDB).

● CPU-Quota modes: monthly and fixed. The projects are charged on a monthly base or get a fixed
amount until it is completely used.

● Accounted CPU-Quotas/job = Number-of-nodes x Walltime x cores/node (corehours)
● Contingent/CPU-Quota states for the projects (for monthly mode): normal, low-contingent,

no-contingent.
● Contingent priorities: normal > lowcont > nocont. Users without contingent get some penalties

for the their jobs, but they are still allowed to submit and run jobs.

Member of Helmholtz Association 3

Slurm - Introduction (1)
● Slurm is the chosen Batch System (Workload Manager) that is used on our clusters. Slurm is an

open-source project developed by SchedMD. For our clusters psslurm, which is a plug-in of psid

daemon and part of the Parastation Cluster tools, is replacing slurmd on the compute nodes.

psslurm is under development by ParTec and JSC in the context of our collaboration.

● Slurm's configuration on our clusters:

▸ High-availability for the main daemons slurmctld and slurmdbd.

▸ Backfilling scheduling algorithm.

▸ No node-sharing.

▸ Job scheduling according to priorities.

▸ Accounting mechanism: slurmdbd with MySQL/MariaDB database.

▸ User and job limits configured by QoS and Partitions.

▸ No preemption configured. Running jobs cannot be preempted.

▸ Prologue and Epilogue, with pshealthcheck from Parastation.

▸ Generic resources (GRES) for different types of resources on the nodes.

Member of Helmholtz Association 4

Slurm - Introduction (2)
● Slurm groups the compute nodes into Partitions. Some limits and policies can be configured for

each Partition:
▸ allowed users, groups or accounts
▸ max. nodes and max. wall-time limit per job

● Other limits are enforced also by the Quality-of-Services (QoS), according to the contingent of
user's group, e.g. max. wall-time limit, max number or queued or running jobs per user, etc...

● Default limits/settings are used when not given by the users, like: number of nodes, number of
tasks per node, wall-time limit, etc.

● According to project's contingent status jobs are given certain QoS:
▸ normal: group has contingent, high job priorities.
▸ lowcont: this months contingent was used.

■ penalty: lower job priorities, max. wall-time limit and max. running jobs
▸ nocont: all contingent of the 3 months time-frame was used.

■ penalty: lowest job priorities, max. wall-time limit and max. running jobs
▸ suspended: the group's project has ended; user cannot submit jobs

Member of Helmholtz Association 5

Slurm - Architecture

Member of Helmholtz Association 6

Slurm - TRES and GRES
● Slurm supports trackable resources (TRES) for accounting purposes. There are default TRES like:

nodes, cpus, memory, billing, etc. But we can extend the resources that are tracked by defining

extra generic resources (GRES) and configuring Slurm to track them too. TRES info is stored in

Slurm database and can be queried with sacct command.

● On our clusters we have set 2 types of GRES:

▸ Memory: mem96, mem128, mem256, mem512, mem1024, ...

▸ GPUs: gpu:[0-N]

● GRES are used for:

▸ specifying desired resources during submission

▸ accounting and statistics

Member of Helmholtz Association 7

Slurm - User Commands (1)
● salloc is used to request interactive jobs/allocations.

● sattach is used to attach standard input, output, and error plus signal capabilities to a currently

running job or job step.

● sbatch is used to submit a batch script (which can be a bash, Perl or Python script).

● scancel is used to cancel a pending or running job or job step.

● sbcast is used to transfer a file to all nodes allocated for a job.

● sgather is used to transfer a file from all allocated nodes to the currently active job. This

command can be used only inside a job script.

● scontrol provides also some functionality for the users to manage jobs or query and get some

information about the system configuration.

● sinfo is used to retrieve information about the partitions, reservations and node states.

Member of Helmholtz Association 8

Slurm - User Commands (2)
● sprio can be used to query job priorities.

● squeue allows to query the list of pending and running jobs.

● srun is used to initiate job-steps mainly within a job or start an interactive jobs. A job can contain

multiple job steps executing sequentially or in parallel on independent or shared nodes within

the job's node allocation.

● sshare is used to retrieve fair-share information for each user.

● sstat allows to query status information about a running job.

● sview is a graphical user interface to get state information for jobs, partitions, and nodes.

● sacct is used to retrieve accounting information about jobs and job steps in Slurm's database.

● sacctmgr allows also the users to query some information about their accounts and other

accounting information in Slurm's database.

* For more detailed info please check the online documentation and the man pages.

Member of Helmholtz Association 9

Slurm - Job Submission
● There are 2 commands for job allocation: sbatch is used for batch jobs and salloc is used to

allocate resource for interactive jobs. The format of these commands:
▸ sbatch [options] <jobscript>
▸ salloc [options] [<command> [args...]]

● List of the most important submission/allocation options:

-A|--account Charge CPU-Quota to specified account (budget ID)..
-c|--cpus-per-task Number of logical CPUs (hardware threads) per task
-e|--error Path to the job's standard error
-i|--input Connect the jobscript’s standard input directly to a file
-J|--job-name Set the name of the job
--mail -user Define the mail address for notifications
--mail-type When to send mail notifications. Options: BEGIN,END,FAIL,ALL,..
-N|--nodes Number of compute nodes used by the job
-n|--ntasks Number of tasks (MPI processes)
--ntasks-per-node Number of tasks per compute node
-o|--output Path to the job's standard output
-p|--partition Partition to be used from the job
-t|--time Maximum wall-clock time of the job
--gres Request nodes with specific Generic Resources
--gpus-per-node Number of gpus per node, similar to --gres=gpu:N
--disable-turbomode Disable CPU turbo mode
--globres Custom global resources, like filesystem licenses

Member of Helmholtz Association 10

Slurm - Submission filter
● Slurm is using a submission filter with the following functionality:

▸ Deny jobs requesting multiple partitions, we allow only one.
▸ Disable the --requeue option. We do not allow users to re-queue their jobs.
▸ Deny submission if budget account was not defined (with --account or -A).
▸ By default add the memory GRES when missing, users can always specify the memory GRES

if they want.
▸ Add the gpu GRES when missing for jobs on gpu partitions. By default the max number of

available GPUs per node is being used, users can specify different number manually.
▸ Deny jobs with wrong memory GRES, e.g. job submitted to mem512 partition with GRES

mem128.

● Examples:
▸ Submit a job in the gpus partition requesting 4 GPUs per node:

sbatch -N 2 -p gpus -A <budgetID> --gres=gpu:4 <job-script>

▸ Submit a job in the mem512 partition:

sbatch -N 4 -p mem512 -A <budgetID> --gres=mem512 <job-script>

Member of Helmholtz Association 11

Slurm - Spawning command
● With srun the users can spawn any kind of application, process or task inside a job allocation.

srun should be used either:

▸ Inside a job script submitted by sbatch (starts a job-step).

▸ After calling salloc (execute programs interactively).

● Command format:

▸ srun [options..] <executable> [args..]

● srun accepts almost all allocation options of sbatch and salloc. There are however some other

unique options:

--forward-x Enable X11 forwarding only for interactive jobs.
--pty Execute a task in pseudo terminal mode.
--multiprog <file> Run different programs with different arguments per task specified in a text file.
--exact Allow a step access to only the resources requested for the step.
--overlap Allow steps to overlap each other on the CPUs.

Note: In order to spawn MPI applications the users should always use srun and not mpiexec.

Member of Helmholtz Association 12

Jobscript - Serial job
● Instead of passing options to sbatch from the command-line, it is better to specify these options

using the #SBATCH directives inside the job scripts which must be positioned in the very
beginning of the jobscript!

● Here is a simple example where some system commands are executed inside the jobscript. This
job will have the name “TestJob”. One compute node will be allocated for 30 minutes. Output
will be written in the defined files. The job will run in the default partition (depends on cluster).

Member of Helmholtz Association 13

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 1
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=30
#SBATCH -A <budgetID>

sleep 5

hostname

Jobscript - Tasks in parallel
● Here is a simple example of a jobscript where we allocate 4 compute nodes for 1 hour. Inside the

jobscript with the srun command we request to execute on 4 nodes with 2 processes per node

the system command hostname, requesting a walltime of 10 minutes. In order to start a parallel

job, users have to use the srun command that will spawn processes on the allocated compute

nodes of the job.

Member of Helmholtz Association 14

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 4
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=10
#SBATCH -A <budgetID>

srun --ntasks-per-node=2 hostname

Jobscript - OpenMP job
● In this example the job will execute an OpenMP application named omp-prog. The allocation is

for 1 node and by default, since there is no node-sharing, all CPUs of the node are available for

the application. The output filenames are also defined and a walltime of 2 hours is requested.

Note: It is important to define and export the variable OMP_NUM_THREADS that will be used by the

executable.

Member of Helmholtz Association 15

#!/bin/bash

#SBATCH -J TestOMP
#SBATCH -N 1
#SBATCH -o TestOMP-%j.out
#SBATCH -e TestOMP-%j.err
#SBATCH --time=02:00:00
#SBATCH -A <budgetID>

export OMP_NUM_THREADS=48

/home/user/test/omp-prog

Jobscript - MPI job
● In the following example, an MPI application will start 144 tasks on 3 nodes running 48 tasks per

node requesting a wall-time limit of 45 minutes in batch partition. Each MPI task will run on a

separate core of the CPU. Users can change the modules also inside the jobscript.

Member of Helmholtz Association 16

#!/bin/bash

#SBATCH --nodes=3
#SBATCH --ntasks=144
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:45:00
#SBATCH --partition=batch
#SBATCH -A <budgetID>

module purge
module load Intel ParaStationMPI

srun ./mpi-prog # implied --ntasks-per-node=48

Jobscript - Hybrid job
● In this example, a hybrid job which uses both MPI and OpenMP is presented. This job will

allocate 5 compute nodes for 2 hours. The job will have 30 MPI tasks in total, 6 tasks per node

and 4 OpenMP threads per task. Note: It is important to define the environment variable

OMP_NUM_THREADS and this must match with the value of the option --cpus-per-task|-c.

Member of Helmholtz Association 17

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 5
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time= 02:00:00
#SBATCH --partition=large
#SBATCH -A <budgetID>

export OMP_NUM_THREADS=4

srun -N 5 --ntasks-per-node=6 --cpus-per-task=4 ./hybrid-prog

Multiple jobsteps
● Slurm introduces the concept of jobsteps. A jobstep can be viewed as a smaller job or allocation inside

the current allocation. Jobsteps can be started only with the srun command.

● The following example shows the usage of jobsteps. With sbatch we allocate 32 compute nodes for 6
hours. Then we spawn 3 jobsteps. The first step will run on 16 compute nodes for 50 minutes, the second
step on 2 nodes for 10 minutes and the third step will use all 32 allocated nodes for 5 hours.

Member of Helmholtz Association 18

#!/bin/bash
#SBATCH -N 32 -t 06:00:00 -p batch -A <budgetID>

srun -N 16 -n 32 -t 00:50:00 ./mpi-prog1
srun -N 2 -n 4 -t 00:10:00 ./mpi-prog2
srun -N 32 --ntasks-per-node=2 -t 05:00:00 ./mpi-prog3

● To run multiple jobsteps in parallel you will have to run the srun commands in background with ”&” and
then call the wait command afterwards. With the --exact option each jobstep will use only the
specified resources and will not block resources from the other ones:

#!/bin/bash
#SBATCH -N 10 -t 05:00:00 -p batch -A <budgetID>

srun --exact -N 2 –ntasks-per-node=24 -c 1 ./mpi-prog1 &
srun --exact -N 8 --ntasks-per-node=2 -c 1 ./mpi-prog2 &
wait

Job dependencies & job-chains
● Slurm supports dependency chains which are collections of batch jobs with defined

dependencies. Job dependencies can be defined using the --dependency|-d option of sbatch

command. The format is:
▸ sbatch -d <type>:<jobID> <jobscript>

▸ Available dependency types: afterany, afternotok, afterok, ..

● Below is an example of a bash script for starting a chain of jobs. The script submits a chain of

$NO_OF_JOBS. Each job will start only after successful completion of its predecessor.

Member of Helmholtz Association 19

#!/bin/bash

NO_OF_JOBS=<no-of-jobs>
JOB_SCRIPT=<jobscript-name>

JOBID=$(sbatch ${JOB_SCRIPT} 2>&1 | awk '{print $(NF)}')

I=0
while [${I} -le ${NO_OF_JOBS}]; do
 JOBID=$(sbatch -d afterok:${JOBID} ${JOB_SCRIPT} 2>&1 | awk '{print $(NF)}')
 let I=${I}+1
done

Job arrays
● Slurm supports job-arrays which can be defined using the option --array|-a of sbatch

command. To address a job-array, Slurm provides a base array ID and an array index for each job.

The syntax for specifying an array-job is: --array=<range of indices>. Their jobids have format

like: ${BASE_JOB_ID}_${TASK_ID}.

● Slurm exports also 2 env. variables that can be used in the job scripts:

▸ SLURM_ARRAY_JOB_ID : base array jobid, replaces %A in jobscript

▸ SLURM_ARRAY_TASK_ID : array index, replaces %a in jobscript

Member of Helmholtz Association 20

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --output=prog-%A_%a.out
#SBATCH --error=prog-%A_%a.err
#SBATCH --time=02:00:00
#SBATCH --array=1-20
#SBATCH -A <budgetID>

srun -N 1 --ntasks-per-node=1 ./prog input_${SLURM_ARRAY_TASK_ID}.txt

Heterogeneous jobs
● Submission commands:

▸ Multiple independent job specifications identified in command line separated by “:”.
■ salloc -N 2 -p gpus : -N 16 -p batch

▸ The job specifications are sent to slurmctld daemon as a list in a single RPC.
▸ The entire request is validated and accepted or rejected.

● Job scripts:
▸ Use “#SBATCH hetjob” between the other #SBATCH options in jobscript to separate job

packs and their groups of resources.
▸ With srun and the “:” format you can spawn jobsteps using heterogeneous resources.

With the srun’s option --het-group you can define which het-group of resources will be
used for the jobsteps. An example of a jobscript:

Member of Helmholtz Association 21

#!/bin/bash
#SBATCH -N 32 --ntasks-per-node=8 -p batch
#SBATCH hetjob
#SBATCH -N 1 --ntasks-per-node=1 -p batch
#SBATCH hetjob
#SBATCH -N 16 --gres=gpu:4--ntasks-per-node=4 -p gpus

srun --het-group=1 exec1 : --het-group=0 exec1 : --het-group=2 exec2

Interactive jobs
● Interactive sessions can be allocated using the salloc command. The following command will

allocate 8 nodes for 30 minutes:

Member of Helmholtz Association 22

@login$ salloc -A <budget-ID> -p <partition> --nodes=8 -t 00:30:00

● After a successful allocation, salloc will start a new shell on the login node where the submission

happened. After the allocation the users can execute srun in order to spawn interactively their

applications on the compute nodes. The interactive session is terminated by exiting the shell.

@login$ srun -N 1 -n 1 --interactive -t 20 --pty /bin/bash
@compute$ srun -N 8 --ntasks-per-node=4 app-exec

@login$ srun -N 4 --ntasks-per-node=2 -t 00:10:00 ./mpi-prog

● It is possible to obtain a remote shell on the a node, after salloc, by running srun with the

following arguments:

With the --interactive option the jobstep will not block any resources from the allocated nodes, all

available resources will be free to be consumed by the jobsteps that can be spawned afterwards.

Further Information
● Updated status of the systems:

▸ Read “Message of the day” on login nodes.

▸ JSC status website: https://status.jsc.fz-juelich.de

● Check the online documentation of each system.

● User support at FZJ:

▸ Email: sc@fz-juelich.de

▸ Phone: +49 2461 61-2828

● Current state & future plans:

▸ Slurm’s powersave mechanism enabled on our clusters (not on JUWELS).

▸ On our clusters current Slurm version is 22.05, we will move to Slurm 23.02 soon.

Member of Helmholtz Association 23

Questions?

Member of Helmholtz Association 24

