
INTRODUCTION TO PARALLEL PROGRAMMING
WITHMPI AND OPENMP
March 18-20 2024 Junxian Chew, Michael Knobloch, Ilya Zhukov, Jolanta Zjupa Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: First Steps with MPI

Member of the Helmholtz Association

WHAT IS MPI?
MPI (Message-Passing Interface) is a message-passing library interface specification. […] MPI addresses
primarily the message-passing parallel programming model, in which data is moved from the address space
of one process to that of another process through cooperative operations on each process. (MPI Forum1)

Industry standard for a message-passing programmingmodel
Provides specifications (no implementations)
Implemented as a library with language bindings for Fortran and C
Portable across different computer architectures

Current version of the standard: 4.1 (November 2023)

1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 4.0. June 9, 2021. URL:
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Member of the Helmholtz Association March 18-20 2024 Slide 1

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

BRIEF HISTORY
<1992 several message-passing libraries were developed, PVM, P4,…
1992 At SC92, several developers for message-passing libraries agreed to develop a standard for message-passing
1994 MPI-1.0 standard published
1997 MPI-2.0 standard adds process creation andmanagement, one-sided communication, extended collective

communication, external interfaces and parallel I/O
2008 MPI-2.1 combines MPI-1.3 and MPI-2.0

2009 MPI-2.2 corrections and clarifications with minor extensions

2012 MPI-3.0 nonblocking collectives, new one-sided operations, Fortran 2008 bindings

2015 MPI-3.1 nonblocking collective I/O

2021 MPI-4.0 large counts, persistent collective communication, partitioned communication, session model
2023 MPI-4.1 clarifications andminor extensions to MPI-4.0

Member of the Helmholtz Association March 18-20 2024 Slide 2

READING THE STANDARD

Member of the Helmholtz Association March 18-20 2024 Slide 3

LITERATURE
Official Resources

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 4.1. Nov. 2, 2023. URL:
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org

Further Resources
MPICH C/C++/FORTRAN implementation: https://www.mpich.org/static/docs/latest/
MPI for Python: https://mpi4py.readthedocs.io/en/stable/index.html

Additional Literature
William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel Programming with the
Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014. 336 pp. ISBN: 9780262527392
William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing Interface. 1st ed. Nov. 2014.
392 pp. ISBN: 9780262527637

Acknowledgements
Rolf Rabenseifner for his comprehensive course on MPI and OpenMP
Marc-André Hermanns, Florian Janetzko, Alexander Trautmann and Benedikt Steinbusch for their course
material on MPI and OpenMP

Member of the Helmholtz Association March 18-20 2024 Slide 4

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org
https://www.mpich.org/static/docs/latest/
https://mpi4py.readthedocs.io/en/stable/index.html

COMPILING & LINKING [MPI-4.0, 19.1.7]
MPI libraries or system vendors usually ship compiler wrappers that set search paths and required libraries, e.g.:

C Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI
$ mpicc example.c -o example.exec
$ # Vendor specific wrapper for IBM's XL C compiler on BG/Q
$ bgxlc example.c -o example.exec

Fortran Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI
$ mpifort example.f90 -o example.exec
$ # Vendor specific wrapper for IBM's XL Fortran compiler on BG/Q
$ bgxlf90 example.f90 -o example.exec

However, neither the existence nor the interface of these wrappers is mandated by the standard.
PYTHON: no compilation is needed.

Member of the Helmholtz Association March 18-20 2024 Slide 5

PROCESS STARTUP [MPI-4.0, 11.5]
The MPI standard does not mandate amechanism for process startup. It suggests that a command mpiexecwith the
following interface should exist:

Process Startup

$ # startup mechanism suggested by the standard
$ mpiexec -n <numprocs> <program.exec>

Sometimes one can also find the mpistart and mpirun command.

Process Startup

$ # Slurm startup mechanism as found on JSC systems
$ srun -n <numprocs> <program.exec>

PYTHON: $ srun -n <numprocs> python <program.py>

Member of the Helmholtz Association March 18-20 2024 Slide 6

LANGUAGE BINDINGS [MPI-4.0, 19, A]
C Language Bindings

C #include <mpi.h>

Fortran Language Bindings

Consistent with F08 standard; good type-checking; highly recommended

F0
8 use mpi_f08

Not consistent with standard; so-so type-checking; not recommended

F9
0 use mpi

Not consistent with standard; no type-checking; strongly discouraged

F7
7 include 'mpif.h'

Member of the Helmholtz Association March 18-20 2024 Slide 7

FORTRAN HINTS [MPI-4.0, 19.1.2 – 19.1.4]
This course uses the Fortran 2008 MPI interface (use mpi_f08) which is not available in all MPI implementations.
The Fortran 90 bindings differ from the Fortran 2008 bindings in the following points:

All derived type arguments are instead integer (some are arrays of integer or have a non-default kind)
Argument intent is not mandated by the Fortran 90 bindings
The ierror argument is mandatory instead of optional
Further details can be found in [MPI-4.0, 19.1]

Member of the Helmholtz Association March 18-20 2024 Slide 8

MPI4PY HINTS
All exercises in the MPI part can be solved using Python with the mpi4py package. The slides do not show Python
syntax, so here is a translation guide from the standard bindings to mpi4py.

Everything lives in the MPImodule (from mpi4py import MPI).
Constants translate to attributes of that module: MPI_COMM_WORLD is MPI.COMM_WORLD.
Central types translate to Python classes: MPI_Comm is MPI.Comm.
Functions related to point-to-point and collective communication translate to methods on MPI.Comm:
MPI_Send becomes MPI.Comm.Send.
Functions related to I/O translate to methods on MPI.File: MPI_File_write becomes
MPI.File.Write.
Communication functions come in two flavors:

high level, uses pickle to (de)serialize python objects, method names start with lower case letters, e.g.
MPI.Comm.send,
low level, uses MPI Datatypes and Python buffers, method names start with upper case letters, e.g.
MPI.Comm.Scatter.

See also https://mpi4py.readthedocs.io and the built-in Python help().

Member of the Helmholtz Association March 18-20 2024 Slide 9

https://mpi4py.readthedocs.io

OTHER LANGUAGE BINDINGS
Besides the official bindings for C and Fortran mandated by the standard, unofficial bindings for other programming
languages exist:

C++ Boost.MPI
MATLAB Parallel Computing Toolbox
Python pyMPI, mpi4py, pypar, MYMPI, …

R Rmpi, pdbMPI
julia MPI.jl
.NET MPI.NET
Java mpiJava, MPJ, MPJ Express

Andmany others, ask your favorite search engine.

Member of the Helmholtz Association March 18-20 2024 Slide 10

WORLD ORDER IN MPI

Program starts as 𝑁 distinct processes.
Stream of instructions might be different for each process.
Each process has access to its own private memory.
Information is exchanged between processes via messages.
Processes may consist of multiple threads (see OpenMP part on
day 1).

𝑝0 𝑝1 𝑝2 …

Member of the Helmholtz Association March 18-20 2024 Slide 11

SERIAL CONTROL FLOW
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 12

SERIAL CONTROL FLOW
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 12

SERIAL CONTROL FLOW
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 12

SERIAL CONTROL FLOW
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association March 18-20 2024 Slide 12

SERIAL CONTROL FLOW
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association March 18-20 2024 Slide 12

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 13

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 13

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 13

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association March 18-20 2024 Slide 13

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!
Hello world!

Member of the Helmholtz Association March 18-20 2024 Slide 13

PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!
Hello world!

Member of the Helmholtz Association March 18-20 2024 Slide 13

INITIALIZATION [MPI-4.0, 11.2.1, 11.2.3]
Initialize MPI library, needs to happen before most other MPI functions can be used

C int MPI_Init(int *argc, char ***argv)

F0
8 MPI_Init(ierror)

integer, optional, intent(out) :: ierror

PYTHON: no initialisation needed.

Member of the Helmholtz Association March 18-20 2024 Slide 14

FINALIZATION [MPI-4.0, 11.2.2, 11.2.3]
Finalize MPI library when you are done using its functions

C int MPI_Finalize(void)

F0
8 MPI_Finalize(ierror)

integer, optional, intent(out) :: ierror

PYTHON: no finalisation needed.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PROCESS ORGANIZATION [MPI-4.0, 7.2]
Process
An MPI program consists of autonomous processes, executing their own code, in an MIMD style (multiple
instruction, multiple data).

Rank
A unique number assigned to each process within a group (start at 0).

Group

An ordered set of process identifiers.

Context
A property of communicators that allows partitioning of the communication space. A message sent in one context
cannot be received in another context.

Communicator
Scope for communication operations within or between groups, combines the concepts of group and context.

OBJECTS [MPI-4.0, 2.5.1]
Opaque Objects

Most objects such as communicators, groups, etc. are opaque to the user and kept in regions of memory managed
by the MPI library. They are created andmarked for destruction using dedicated routines. Objects are made
accessible to the user via handle values.

Handle
Handles are references to MPI objects. They can be checked for referential equality and copied, however copying a
handle does not copy the object it refers to. Destroying an object that has operations pending will not disrupt those
operations.

Predefined Handles
MPI defines several constant handles to certain objects, e.g. MPI_COMM_WORLD a communicator containing all
processes initially partaking in a parallel execution of a program.

Member of the Helmholtz Association March 18-20 2024 Slide 17

PREDEFINED COMMUNICATORS
After MPI_Init has been called, MPI_COMM_WORLD is a valid handle to a predefined communicator that includes
all processes available for communication. Additionally, the handle MPI_COMM_SELF is a communicator that is
valid on each process and contains only the process itself.

C

MPI_Comm MPI_COMM_WORLD;
MPI_Comm MPI_COMM_SELF;

F0
8 type(MPI_Comm) :: MPI_COMM_WORLD

type(MPI_Comm) :: MPI_COMM_SELF

Py

mpi4py.MPI.COMM_WORLD
mpi4py.MPI.COMM_SELF

Member of the Helmholtz Association March 18-20 2024 Slide 18

COMMUNICATOR SIZE [MPI-4.0, 7.4.1]
Determine the total number of processes in a communicator

C int MPI_Comm_size(MPI_Comm comm, int *size)

F0
8

MPI_Comm_size(comm, size, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(out) :: size
integer, optional, intent(out) :: ierror

Py size = mpi4py.MPI.Comm.Get_size()

Examples

C

int size;
int ierror = MPI_Comm_size(MPI_COMM_WORLD, &size);

Member of the Helmholtz Association March 18-20 2024 Slide 19

PROCESS RANK [MPI-4.0, 7.4.1]
Determine the rank of the calling process within a communicator

C int MPI_Comm_rank(MPI_Comm comm, int *rank)

F0
8

MPI_Comm_rank(comm, rank, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(out) :: rank
integer, optional, intent(out) :: ierror

Py rank = mpi4py.MPI.Comm.Get_rank()

Examples

C

int rank;
int ierror = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Member of the Helmholtz Association March 18-20 2024 Slide 20

ERROR HANDLING [MPI-4.0, 9.3, 9.4, 9.5]
Flexible error handling through error handlers which can be attached to

Communicators
Files
Windows

Error handlers can be
MPI_ERRORS_ARE_FATAL Errors encountered in MPI routines abort execution

MPI_ERRORS_RETURN An error code is returned from the routine
Custom error handler A user supplied function is called on encountering an error

By default
Communicators use MPI_ERRORS_ARE_FATAL
Files use MPI_ERRORS_RETURN
Windows use MPI_ERRORS_ARE_FATAL

Member of the Helmholtz Association March 18-20 2024 Slide 21

BASIC CODE STRUCTURE IN C

Member of the Helmholtz Association March 18-20 2024 Slide 22

BASIC CODE STRUCTURE IN PYTHON

Member of the Helmholtz Association March 18-20 2024 Slide 23

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1
process 0 of 2

MORE PARALLEL CONTROL FLOW (IN MPI)
Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1
process 0 of 2

Part II: Blocking Point-to-Point Communication

Member of the Helmholtz Association

MESSAGE PASSING

be
fo
re

aft
er

𝜋

𝜋 𝜋

Member of the Helmholtz Association March 18-20 2024 Slide 25

BLOCKING& NONBLOCKING PROCEDURES
Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed to reuse resources specified
in the call to the procedure.

Nonblocking

All calls are local and return immediately. All associated send buffers and buffers associated with input arguments
should not be modified, and all associated receive buffers should not be accessed, until the communication has
been completed using an appropriate completion procedure. The call returns a request handle, which must be
passed to a completion call.

Member of the Helmholtz Association March 18-20 2024 Slide 26

PROPERTIES
Communication between two processes within the same communicator
A process can send messages to itself.
A source process sends a message to a destination process using an MPI send routine
A destination process needs to post a receive using an MPI receive routine
The source process and the destination process are specified by their ranks in the communicator
Every message sent with a point-to-point operation needs to bematched by a receive operation

Member of the Helmholtz Association March 18-20 2024 Slide 27

SENDINGMESSAGES [MPI-4.0, 3.2.1]
* MPI_Send(<buffer>, <destination>)

C

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)↪

F0
8

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count, dest, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 18-20 2024 Slide 28

MESSAGES [MPI-4.0, 3.2.2, 3.2.3]
Amessage consists of two parts:

Envelope

Source process source
Destination process dest
Tag tag
Communicator comm

Data
Message data is read from/written to buffers specified by:

Address in memory buf
Number of elements found in the buffer count
Structure of the data datatype

Member of the Helmholtz Association March 18-20 2024 Slide 29

DATA TYPES [MPI-4.0, 3.2.2, 3.3, 5.1]
Data Type

Describes the structure of a piece of data

Basic Data Types

Named by the standard, most correspond to basic data types of C or Fortran
C type MPI basic data type

signed int MPI_INT
float MPI_FLOAT
char MPI_CHAR
…

Fortran type MPI basic data type

integer MPI_INTEGER
real MPI_REAL
character MPI_CHARACTER
…

Derived Data Type

Data types which are not basic datatypes. These can be constructed from other (basic or derived) datatypes.

Member of the Helmholtz Association March 18-20 2024 Slide 30

DATA TYPE MATCHING [MPI-4.0, 3.3]
Untyped Communication

Contents of send and receive buffers are declared as MPI_BYTE.
Actual contents of buffers can be any type (possibly different).
Use with care.

Typed Communication

Type of buffer contents must match MPI data type (e.g. in C int and MPI_INT).
Data type on sendmust match data type on receive operation.
Allows data conversion when used on heterogeneous systems.

Packed data
See [MPI-4.0, 5.2]

Member of the Helmholtz Association March 18-20 2024 Slide 31

QUIZ
How are buffers typically specified in MPI?

1 Start address and end address
2 Start address and count
3 Start address, count, and data type

Member of the Helmholtz Association March 18-20 2024 Slide 32

RECEIVINGMESSAGES [MPI-4.0, 3.2.4]
* MPI_Recv(<buffer>, <source>) -> <status>

C

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)↪

F0
8

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
type(*), dimension(..) :: buf
integer, intent(in) :: count, source, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

count specifies the capacity of the buffer
Wildcard values are permitted (MPI_ANY_SOURCE & MPI_ANY_TAG)

Member of the Helmholtz Association March 18-20 2024 Slide 33

THE MPI_STATUS TYPE [MPI-4.0, 3.2.5]
Contains information about receivedmessages

C

MPI_Status status;
status.MPI_SOURCE
status.MPI_TAG
status.MPI_ERROR F0

8

type(MPI_status) :: status
status%MPI_SOURCE
status%MPI_TAG
status%MPI_ERROR

C

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int
*count)↪

F0
8

MPI_Get_count(status, datatype, count, ierror)
type(MPI_Status), intent(in) :: status
type(MPI_Datatype), intent(in) :: datatype
integer, intent(out) :: count
integer, optional, intent(out) :: ierror

Pass MPI_STATUS_IGNORE to MPI_Recv if not interested.

Member of the Helmholtz Association March 18-20 2024 Slide 34

PROBE [MPI-4.0, 3.8.1]
* MPI_Probe(<source>) -> <status>

C int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

F0
8

MPI_Probe(source, tag, comm, status, ierror)
integer, intent(in) :: source, tag
type(MPI_Comm), intent(in) :: comm
type(MPI_Status), intent(out) :: status
integer, optional, intent(out) :: ierror

Returns after a matching message is ready to be received.
Same rules for message matching as receive routines
Wildcards permitted for source and tag
status contains information about message (e.g. number of elements)

Member of the Helmholtz Association March 18-20 2024 Slide 35

MESSAGE ASSEMBLY

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 1 2 3

Buffer 0 1 2 3 ? ? ? ? ? ? ...

MPI_Send(buffer, 4, MPI_INT, ...)

MPI_Recv(buffer, 4, MPI_INT, ...)

Member of the Helmholtz Association March 18-20 2024 Slide 36

SENDMODES [MPI-4.0, 3.4]
Synchronous send: MPI_Ssend

Only completes when the receive has started.

Buffered send: MPI_Bsend

May complete before a matching receive is posted
Needs a user-supplied buffer (see MPI_Buffer_attach)

Standard send: MPI_Send

Either synchronous or buffered, leaves decision to MPI
If buffered, an internal buffer is used

Ready send: MPI_Rsend

Asserts that a matching receive has already been posted (otherwise generates an error)
Might enable more efficient communication

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

SYNCHRONOUS SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Ssend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 38

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

BUFFERED SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Bsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 39

QUIZ
In the example, what would happen if process 0 finished executing before process 1 started receiving?

1 The computation would abort.
2 The computation would behave in an implementation defined way.
3 Trick question! Before it finishes, a conforming program has to call MPI_Finalizewhich can block until

outstanding bufferedmessages have been sent.

Member of the Helmholtz Association March 18-20 2024 Slide 40

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Console

Member of the Helmholtz Association March 18-20 2024 Slide 41

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Console

Member of the Helmholtz Association March 18-20 2024 Slide 41

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Console

CRASH!

Member of the Helmholtz Association March 18-20 2024 Slide 41

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

READY SEND CONTROL FLOW
Process 0
subroutine A
statement1
call MPI_Rsend(..., 1, ...)
statement3

end subroutine

Process 1
subroutine B
statement1
call MPI_Recv(..., 0, ...)
statement3

end subroutine

Member of the Helmholtz Association March 18-20 2024 Slide 42

RECEIVE MODES [MPI-4.0, 3.4]
Only one receive routine for all sendmodes:

Receive: MPI_Recv

Completes when amessage has arrived andmessage data has been stored in the buffer
Same routine for all communication modes

All blocking routines, both send and receive, guarantee that buffers can be reused after control returns.

Member of the Helmholtz Association March 18-20 2024 Slide 43

POINT-TO-POINT SEMANTICS [MPI-4.0, 3.5]
Order
In single threaded programs, messages are non-overtaking. Between any pair of processes, messages will be
received in the order they were sent.

Progress

Out of a pair of matching send and receive operations, at least one is guaranteed to complete.

Fairness
Fairness is not guaranteed by the MPI standard.

Resource limitations
Resource starvation may lead to deadlock, e.g. if progress relies on availability of buffer space for standard mode
sends.

Member of the Helmholtz Association March 18-20 2024 Slide 44

DEADLOCK
Structure of program prevents blocking routines from ever completing, e.g.:

Process 0
call MPI_Ssend(..., 1, ...)
call MPI_Recv(..., 1, ...)

Process 1
call MPI_Ssend(..., 0, ...)
call MPI_Recv(..., 0, ...)

Mitigation Strategies

Changing communication structure (e.g. checkerboard)
Using MPI_Sendrecv
Using nonblocking routines

Member of the Helmholtz Association March 18-20 2024 Slide 45

DEADLOCK
Structure of program prevents blocking routines from ever completing, e.g.:

Process 0
call MPI_Ssend(..., 1, ...)
call MPI_Recv(..., 1, ...)

Process 1
call MPI_Ssend(..., 0, ...)
call MPI_Recv(..., 0, ...)

Mitigation Strategies

Changing communication structure (e.g. checkerboard)
Using MPI_Sendrecv
Using nonblocking routines

Member of the Helmholtz Association March 18-20 2024 Slide 45

DEADLOCK
Structure of program prevents blocking routines from ever completing, e.g.:

Process 0
call MPI_Ssend(..., 1, ...)
call MPI_Recv(..., 1, ...)

Process 1
call MPI_Ssend(..., 0, ...)
call MPI_Recv(..., 0, ...)

Mitigation Strategies

Changing communication structure (e.g. checkerboard)
Using MPI_Sendrecv
Using nonblocking routines

Member of the Helmholtz Association March 18-20 2024 Slide 45

Part III: Nonblocking Point-to-Point Communication

Member of the Helmholtz Association

BLOCKING& NONBLOCKING PROCEDURES
Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed to reuse resources specified
in the call to the procedure.

Nonblocking

All calls are local and return immediately. All associated send buffers and buffers associated with input arguments
should not be modified, and all associated receive buffers should not be accessed, until the communication has
been completed using an appropriate completion procedure. The call returns a request handle, which must be
passed to a completion call.

Member of the Helmholtz Association March 18-20 2024 Slide 46

RATIONALE [MPI-4.0, 3.7]
Premise
Communication operations are split into start and completion. The start routine produces a request handle that
represents the in-flight operation and is used in the completion routine. The user promises to refrain from
accessing the contents of message buffers while the operation is in flight.

Benefit
A single process can have multiple nonblocking operations in flight at the same time. This enables communication
patterns that would lead to deadlock if programmed using blocking variants of the same operations. Also, the
additional leeway given to the MPI library may be utilized to, e.g.:

overlap computation and communication
overlap communication
pipeline communication

Member of the Helmholtz Association March 18-20 2024 Slide 47

INITIATION ROUTINES [MPI-4.0, 3.7.2]

Send
Synchronous MPI_Issend

Standard MPI_Isend
Buffered MPI_Ibsend

Ready MPI_Irsend

Receive
MPI_Irecv

Probe
MPI_Iprobe

“I” is for immediate.
Signature is similar to blocking counterparts with additional request object.
Initiate operations and relinquish access rights to any buffer involved.

Member of the Helmholtz Association March 18-20 2024 Slide 48

NONBLOCKING SEND [MPI-4.0, 3.7.2]
* MPI_Isend(<buffer>, <destination>) -> <request>

C

int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)↪

F0
8

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
type(*), dimension(..), intent(in), asynchronous :: buf
integer, intent(in) :: count, dest, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 18-20 2024 Slide 49

NONBLOCKING RECEIVE [MPI-4.0, 3.7.2]
* MPI_Irecv(<buffer>, <source>) -> <request>

C

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Request *request)↪

F0
8

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
type(*), dimension(..), asynchronous :: buf
integer, intent(in) :: count, source, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 18-20 2024 Slide 50

NONBLOCKING PROBE [MPI-4.0, 3.8.1]
* MPI_Iprobe(<source>) -> <status>?

C

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag, MPI_Status
*status)↪

F0
8

MPI_Iprobe(source, tag, comm, flag, status, ierror)
integer, intent(in) :: source, tag
type(MPI_Comm), intent(in) :: comm
logical, intent(out) :: flag
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Does not follow start/completion model.
Uses true/false flag to indicate availability of a message.

Member of the Helmholtz Association March 18-20 2024 Slide 51

WAIT [MPI-4.0, 3.7.3]
* MPI_Wait(<request>) -> <status>

C int MPI_Wait(MPI_Request *request, MPI_Status *status)

F0
8

MPI_Wait(request, status, ierror)
type(MPI_Request), intent(inout) :: request
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Blocks until operation associated with request is completed
To wait for the completion of several pending operations
MPI_Waitall All events complete

MPI_Waitsome At least one event completes
MPI_Waitany Exactly one event completes

Member of the Helmholtz Association March 18-20 2024 Slide 52

TEST [MPI-4.0, 3.7.3]
* MPI_Test(<request>) -> <status>?

C int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

F0
8

MPI_Test(request, flag, status, ierror)
type(MPI_Request), intent(inout) :: request
logical, intent(out) :: flag
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Does not block
flag indicates whether the associated operation has completed
Test for the completion of several pending operations
MPI_Testall All events complete

MPI_Testsome At least one event completes
MPI_Testany Exactly one event completes

Member of the Helmholtz Association March 18-20 2024 Slide 53

FREE [MPI-4.0, 3.7.3]
* MPI_Request_free(<request>)

C int MPI_Request_free(MPI_Request *request)

F0
8

MPI_Request_free(request, ierror)
type(MPI_Request), intent(inout) :: request
integer, optional, intent(out) :: ierror

Marks the request for deallocation
Invalidates the request handle
Operation is allowed to complete
Completion cannot be checked for

Member of the Helmholtz Association March 18-20 2024 Slide 54

CANCEL [MPI-4.0, 3.8.4]
* MPI_Cancel(<request>)

C int MPI_Cancel(MPI_Request *request)

F0
8

MPI_Cancel(request, ierror)
type(MPI_Request), intent(in) :: request
integer, optional, intent(out) :: ierror

Marks an operation for cancellation
Request still has to be completed via MPI_Wait, MPI_Test or MPI_Request_free
Operation is either cancelled completely or succeeds (indicated in status value)

Member of the Helmholtz Association March 18-20 2024 Slide 55

BLOCKING VS. NONBLOCKING OPERATIONS
A blocking send can be paired with a nonblocking receive and vice versa
Nonblocking sends can use any mode, just like the blocking counterparts

Synchronization of MPI_Issend is enforced at completion (wait or test)
Asserted readiness of MPI_Irsendmust hold at start of operation

A nonblocking operation immediately followed by amatching wait is equivalent to the blocking operation

The Fortran Language Bindings and nonblocking operations

Arrays with subscript triplets (e.g. a(1:100:5)) can only be reliably used as buffers if the compile time
constant MPI_SUBARRAYS_SUPPORTED equals .true. [MPI-4.0, 19.1.12]
Arrays with vector subscripts must not be used as buffers [MPI-4.0, 19.1.13]
Fortran compilers may optimize your program beyond the point of being correct. Communication buffers
should be protected by the asynchronous attribute (make sure
MPI_ASYNC_PROTECTS_NONBLOCKING is .true.) [MPI-4.0, 19.1.16–19.1.20]

Member of the Helmholtz Association March 18-20 2024 Slide 56

OVERLAPPING COMMUNICATION
Main benefit is overlap of communication with communication
Overlap with computation

Progress may only be done inside of MPI routines
Not all platforms perform significantly better than well placed blocking communication
If hardware support is present, application performance may significantly improve due to overlap

General recommendation
Initiation of operations should be placed as early as possible
Completion should be placed as late as possible

Member of the Helmholtz Association March 18-20 2024 Slide 57

QUIZ
What are the semantics of synchronous send (MPI_Ssend)?

1 It buffers the message data and returns independent of the recipients progress.
2 It blocks until the recipient has started receiving.
3 It creates an error if the recipient has not already initiated the receive operation.

Member of the Helmholtz Association March 18-20 2024 Slide 58

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

NONBLOCKING CONTROL FLOW
Process 0
program example
call MPI_Issend(..., 1, ...)
statement2
call MPI_Wait(...)
statement4

end program

Process 1
program example
statement1
call MPI_Recv(..., 0, ...)
statement3

end program

Member of the Helmholtz Association March 18-20 2024 Slide 59

Part IV: Blocking Point-to-Point Communication Exercises

Member of the Helmholtz Association

EXERCISES
Ex
er
ci
se

1
–
M
PI

He
llo

W
or
ld
!

1.1 Hello World
An empty file hello_world.{c|F90|py} is provided for you. Your tasks are:

Write a parallel programme, such that each process should print the following text:
hello world. from process i out of n processes.
i denotes the rank of the process, and n the total number of participating processes.
Compile and run the application on 8 processes. You can use the following command:
C|Fortran: srun --ntasks-per-node=8 <your_application_name>
Python: srun --ntasks-per-node=8 python ./hello_world.py

Remember to include the required MPI libraries in the header of the file.
Use:
MPI_Comm_size for C|Fortran, mpi4py.MPI.COMM_WORLD.Get_size() for Python
MPI_Comm_rank for C|Fortran, mpi4py.MPI.COMM_WORLD.Get_rank() for Python

Member of the Helmholtz Association March 18-20 2024 Slide 60

EXERCISES
Ex
er
ci
se

2
–
Se

nd
an

d
Re

cv

2.1 Sending a number

A template file skeleton.{c|F90|py} is provided for you.
Copy the file into a new file named neighbour_sendrecv_1way.{c|F90|py}
The task:

The program is intended to run on two processes.
Write a parallel program that Rank 0 process sends its rank number to Rank 1 process.
The message should be sent with tag value of 42.
Rank 1 then prints the following message:
I am rank 1, I have received message i from rank 0.
i denotes the number that is sent by Rank 0.

Use:
MPI_Send and MPI_Recv for C|Fortran, comm.send() and comm.recv() for Python
Consider/Read up on MPI_ANY_TAG and MPI_STATUS_IGNORE.

Member of the Helmholtz Association March 18-20 2024 Slide 61

EXERCISES
Ex
er
ci
se

3
–
Se

nd
an

d
Re

cv

3.1 Sending a number 2

A template file skeleton.{c|F90|py} is provided for you.
Copy the file into a new file named neighbour_sendrecv_2way.{c|F90|py}
The task:

The program is intended to run on two processes.
Write a parallel program that participating processes send their rank number to each other.
Both processes then prints the following message:
I am rank m , I have receivedmessage i from rank s.
m denotes the rank number of self, i is the content of the passedmessage, and s is the rank of the sender.
In this very simple scenario, i and s is identitcal.

Use:
MPI_Send and MPI_Recv for C|Fortran, comm.send() and comm.recv() for Python
Alternative is the MPI_Sendrecv, or sendrecv().

Member of the Helmholtz Association March 18-20 2024 Slide 62

EXERCISES
Ex
er
ci
se

4
–
N
pr
oc
es
se
sc

om
m

pa
tte

rn 4.1 Summing the ranks

A template file skeleton.{c|F90|py} is provided for you.
Copy the file into a new file named ring_sendrecv.{c|F90|py}
Descriptions of the MPI programme:

The MPI program should produce a sum of the rank of all processes.
All processes should carry the summed value.
All processes then prints the following message:
I am rank m , I have obtained the sum of all rank=i.
m denotes the rank number of self, i is the total sum of ranks.
The MPI program should be tested with 4, 8 and 12 processes. The sums should then be 6, 28, and 66.

Feel free to use any of the P2P communication calls, beware of deadlocks!

Member of the Helmholtz Association March 18-20 2024 Slide 63

	First Steps with MPI
	What is MPI?
	Infrastructure
	Basic Program Structure

	Blocking Point-to-Point Communication
	Introduction
	Sending
	Receiving
	Communication Modes
	Semantics
	Pitfalls

	Nonblocking Point-to-Point Communication
	Introduction
	Start
	Completion
	Remarks

	Blocking Point-to-Point Communication Exercises
	Exercises

