
INTRODUCTION TO PARALLEL PROGRAMMING
WITHMPI AND OPENMP
March 18-20 2024 Junxian Chew, Michael Knobloch, Ilya Zhukov, Jolanta Zjupa Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: Introduction to OpenMP

Member of the Helmholtz Association

WHAT IS OPENMP?
Open specifications forMulti-Processing (not implementations)

API (Application Program Interface) for sharedmemory, explicit, thread based parallelism.

Goals of OpenMP:
Standardization
Ease of Use
Portability (across different platforms)

Three main API components:
Compiler Directives
Runtime Library Routines
Environment Variables

Current version of the specification: 5.2 (November 2021)
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

Member of the Helmholtz Association March 18-20 2024 Slide 1

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

BRIEF HISTORY
1997 FORTRAN version 1.0
1998 C/C++ version 1.0
1999 FORTRAN version 1.1
2000 FORTRAN version 2.0
2002 C/C++ version 2.0
2005 First combined version 2.5, memory model,

internal control variables, clarifications
2008 Version 3.0, tasks
2011 Version 3.1, extended task facilities

2013 Version 4.0, thread affinity, SIMD, devices, tasks
(dependencies, groups, and cancellation),
improved Fortran 2003 compatibility

2015 Version 4.5, extended SIMD and devices facilities,
task priorities

2018 Version 5.0, memory model, base language
compatibility, allocators, extended task and
devices facilities

2020 Version 5.1, support for newer base languages,
loop transformations, compare-and-swap,
extended devices facilities

2021 Version 5.2, reorganization of the specification
and improved consistency

Member of the Helmholtz Association March 18-20 2024 Slide 2

LITERATURE
Official Resources

OpenMP Architecture Review Board. OpenMP Application Programming Interface. Version 5.2. Nov. 2021. URL:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
OpenMP Architecture Review Board. OpenMP Application Programming Interface. Examples. Version 5.1. Aug.
2021. URL: https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org

Recommended by https://www.openmp.org/resources/openmp-books/
Michael Klemm and Jim Cownie. High Performance Parallel Runtimes. De Gruyter Oldenbourg, 2021. ISBN:
9783110632729. DOI: doi:10.1515/9783110632729
Timothy G. Mattson, Yun He, and Alice E. Koniges. The OpenMP Common Core. Making OpenMP Simple Again.
1st ed. The MIT Press, Nov. 19, 2019. 320 pp. ISBN: 9780262538862
Ruud van der Pas, Eric Stotzer, and Christian Terboven. Using OpenMP—The Next Step. Affinity, Accelerators,
Tasking, and SIMD. 1st ed. The MIT Press, Oct. 13, 2017. 392 pp. ISBN: 9780262534789

Additional Literature
Michael McCool, James Reinders, and Arch Robison. Structured Parallel Programming. Patterns for Efficient
Computation. 1st ed. Morgan Kaufmann, July 31, 2012. 432 pp. ISBN: 9780124159938

Member of the Helmholtz Association March 18-20 2024 Slide 3

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org
https://www.openmp.org/resources/openmp-books/
https://doi.org/doi:10.1515/9783110632729

LITERATURE
Online Tutorials

https://hpc-tutorials.llnl.gov/openmp/
Older Works (https://www.openmp.org/resources/openmp-books/)

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. Portable Shared Memory Parallel
Programming. 1st ed. Scientific and Engineering Computation. The MIT Press, Oct. 12, 2007. 384 pp. ISBN:
9780262533027
Rohit Chandra et al. Parallel Programming in OpenMP. 1st ed. Morgan Kaufmann, Oct. 11, 2000. 231 pp. ISBN:
9781558606715
Michael Quinn. Parallel Programming in C with MPI and OpenMP. 1st ed. McGraw-Hill, June 5, 2003. 544 pp. ISBN:
9780072822564
Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns for Parallel Programming. 1st ed.
Software Patterns. Sept. 15, 2004. 384 pp. ISBN: 9780321228116

Member of the Helmholtz Association March 18-20 2024 Slide 3

https://hpc-tutorials.llnl.gov/openmp/
https://www.openmp.org/resources/openmp-books/

OPENMP PROGRAMMINGMODEL: FORK - JOIN

Thread Based - Explicit - Nested Parallelism - Dynamic Threads - no I/O

Member of the Helmholtz Association March 18-20 2024 Slide 4

THREADS & TASKS

Thread
Smallest sequence of programmed instructions or an execution entity that can bemanaged independently by a
scheduler (which is typically a part of the operating system).

OpenMP Thread

A thread that is managed by the OpenMP runtime system.

Team
A set of one or more threads participating in the execution of a parallel region.

Task
A specific instance of executable code and its data environment that the OpenMP imlementation can schedule for
execution by threads.

Member of the Helmholtz Association March 18-20 2024 Slide 5

PROGRAM

Base Language

A programming language that serves as the foundation of the OpenMP specification.

The following base languages are given in [OpenMP-5.2, 1.7]: C90, C99, C11, C18, C++98, C++11, C++14, C++17, C++20,
Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, and a subset of Fortran 2018

Base Program

A programwritten in the base language.

OpenMP Program

A program that consists of a base program that is annotated with OpenMP directives or that calls OpenMP API
runtime library routines.

Internal Control Variables (ICVs)

ICVs are initialized by the implementation. They can be set through OpenMP environment variables, through
OpenMP runtime routines, and through directive clauses. The OpenMP program can retrieve the values of ICVs only
through OpenMP runtime routines.Member of the Helmholtz Association March 18-20 2024 Slide 6

COMPILING & LINKING
Compilers that conform to the OpenMP specification usually accept a command line argument that turns on OpenMP
support, e.g.:

Intel C Compiler OpenMP Command Line Switch

$ icc -qopenmp ...

GNU C Compiler OpenMP Command Line Switch

$ gcc -fopenmp ...

GNU Fortran Compiler OpenMP Command Line Switch

$ gfortran -fopenmp ...

The name of the command line argument is not mandated by the specification and differs from one compiler to
another.

Member of the Helmholtz Association March 18-20 2024 Slide 7

RUNTIME LIBRARY DEFINITIONS

C/C++ Runtime Library Definitions

Runtime library routines and associated types are defined in the <omp.h> header file.

C #include <omp.h>

Fortran Runtime Library Definitions

Runtime library routines and associated types are defined in either a Fortran include file

F7
7 include "omp_lib.h"

or a Fortran 90 module

F0
8 use omp_lib

Member of the Helmholtz Association March 18-20 2024 Slide 8

RUNTIME LIBRARY ROUTINES
OpenMP runtime library routines are used for a variety of purposes, a.o. to set or retrieve ICVs.

All OpenMP runtime routine names start with a lower case 𝑜𝑚𝑝_

omp_get_num_threads()

Returns the number of threads that constitute the team executing a parallel region fromwhich this routine is called.

omp_set_num_threads()

Sets the number of threads that will be used in the following parallel region(s).

omp_get_thread_num()

Returns the thread number of the thread within a team calling this routine.

Member of the Helmholtz Association March 18-20 2024 Slide 9

ENVIRONMENT VARIABLES
OpenMP environment variables set ICVs of an OpenMP programs in the shell:

csh/tcsh

$ setenv ENV_VAR {NUM}

sh/bash

$ export ENV_VAR={NUM}

Names of the environment variables must be upper case
values given to environment variables are case insensitive andmay have leading and trailing white space

OMP_NUM_THREADS

Sets number of threads to use in the OpenMP program.

Modifications to environment variables after the OpenMP program has started are ignored by the OpenMP
implementation. ICVs can be however changed through directive clauses and OpenMP runtime routines.

Member of the Helmholtz Association March 18-20 2024 Slide 10

C AND C++ DIRECTIVE FORMAT
C #pragma omp directive-name [clause, ...] newline

Directives are case-sensitive
Only one directive-name can be specified per directive
Each directive applies to the next statement which must be a structured block
Clauses are optional and can be in any order
Newline is required, and precedes the structured block which is enclosed by the directive.

Structured Block
An executable statement, possibly compound, with a single entry at the top and a single exit at the bottom, or an
OpenMP construct.

Member of the Helmholtz Association March 18-20 2024 Slide 11

FORTRAN DIRECTIVE FORMAT
F0
8 sentinel directive-name [clause ...]

Directives are case-insensitive
Fixed Form Sentinels

F0
8 sentinel = !$OMP | C$OMP | *$OMP

Must start in column 1
The usual line length, white space, continuation and column rules apply
Column 6 is blank for first line of directive, non-blank and non-zero for continuation

Free Form Sentinel

F0
8 sentinel = !$OMP

The usual line length, white space and continuation rules apply

Member of the Helmholtz Association March 18-20 2024 Slide 12

DIRECTIVES: PARALLEL REGION CONSTRUCT
The fundamental OpenMP: A parallel region is a block of code that will be executed bymultiple threads.

C

#pragma omp parallel [clause ...] newline
structured_block

F0
8

!$OMP PARALLEL [clause ...]
structured_block

!$omp end parallel

Thread that reaches a parallel directive creates a team of threads and becomes the master of the team
Creates a team of threads to execute the parallel region
The code is duplicated and all threads in the teamwill execute the code contained in the structured block
Inside the region threads are identified by consecutive numbers starting at zero
There is an implied barrier at the end of a parallel section, only the master thread continues past this point
Optional clauses (explained later) can be used to modify behaviour and data environment of the parallel
region

Member of the Helmholtz Association March 18-20 2024 Slide 13

A FIRST OPENMP PROGRAM
C

#include <stdio.h>
#include <omp.h>

int main(void) {
printf("Hello from your main thread.\n");

#pragma omp parallel
printf("Hello from thread %d of %d.\n", omp_get_thread_num(),

omp_get_num_threads());↪

printf("Hello again from your main thread.\n");
}

Member of the Helmholtz Association March 18-20 2024 Slide 14

A FIRST OPENMP PROGRAM

Program Output

$ gcc -fopenmp -o hello_openmp.x hello_openmp.c
$./hello_openmp.x
Hello from your main thread.
Hello from thread 1 of 8.
Hello from thread 0 of 8.
Hello from thread 3 of 8.
Hello from thread 4 of 8.
Hello from thread 6 of 8.
Hello from thread 7 of 8.
Hello from thread 2 of 8.
Hello from thread 5 of 8.
Hello again from your main thread.

Member of the Helmholtz Association March 18-20 2024 Slide 14

A FIRST OPENMP PROGRAM
F0
8

program hello_openmp
use omp_lib
implicit none

print *, "Hello from your main thread."

!$omp parallel
print *, "Hello from thread ", omp_get_thread_num(), " of ",

omp_get_num_threads(), "."↪

!$omp end parallel

print *, "Hello again from your main thread."
end program

Member of the Helmholtz Association March 18-20 2024 Slide 14

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 15

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.
Hello again from your main thread.

Member of the Helmholtz Association March 18-20 2024 Slide 15

SETTING NUMBER OF THREADS

// ENVIRONMENTAL VARIABLE

$ export OMP_NUM_THREADS={NUM}

C

#include <stdio.h>
#include <omp.h>

int main(){
printf("master thread: hello world.\n");

omp_set_num_threads({NUM}); // RUNTIME LIBRARY ROUTINE
#pragma omp parallel num_threads({NUM}) // DIRECTIVE CLAUSE

printf("thread %d out of %d threads: hello world. \n",
omp_get_thread_num(),omp_get_num_threads());↪

return(0);
}

Member of the Helmholtz Association March 18-20 2024 Slide 16

Part II: Low-Level OpenMP Concepts

Member of the Helmholtz Association

DATA-SHARING ATTRIBUTES [OpenMP-5.2, 5.1]

Variable
A named data storage block, for which the value can be defined and redefined during the execution of a program.

Private Variable
With respect to a given set of task regions that bind to the same parallel region, a variable for which the name
provides access to a different block of storage for each task region.

Shared Variable
With respect to a given set of task regions that bind to the same parallel region, a variable for which the name
provides access to the same block of storage for each task region.

Member of the Helmholtz Association March 18-20 2024 Slide 17

DATASHARING ATTRIBUTE CLAUSES
PRIVATE Clause declares variables in its list to be private to each thread. A new object of the same type is declared
and referenced once for each thread in the team. Private variables should be assumed to be uninitialized for each
thread. C/C++: private(list), F: PRIVATE(list).

FIRSTPRIVATE Clause equals the private clause with automatic initialization of the listed variables accoding to the
value of their original objects prior to entry into the parallel or work-sharing construct. C/C++: firstprivate(list), F:
FIRSTPRIVATE(list).

LASTPRIVATE Clause equals the private clause with a copy from the last loop iteration or section to the original
variable object. C/C++: lastprivate(list), F: LASTPRIVATE(list).

SHARED Clause declares variables in its list to be shared among all threads in the team. A shared variable exists in
only onememory location and all threads can read or write to that address. C/C++: shared(list), F: SHARED(list).

DEFAULT Clause specifies a default scope for all variables in the lexical extent of any parallel region.
C/C++: default (shared | none), F: DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE).

Member of the Helmholtz Association March 18-20 2024 Slide 18

REDUCTION CLAUSE [OpenMP-5.2, 5.5.8]
* reduction(reduction-identifier : list)

Listed variables are declared private.
At the end of the construct, the original variable is updated by combining the private copies using the operation
given by reduction-identifier.
reduction-identifiermay be +, -, *, &, |, ^, &&, ||, min or max (C and C++) or an identifier (C) or an
id-expression (C++)
reduction-identifiermay be a base language identifier, a user-defined operator, or one of +, -, *,
.and., .or., .eqv., .neqv., max, min, iand, ior or ieor (Fortran)
Private versions of the variable are initialized with appropriate values

Member of the Helmholtz Association March 18-20 2024 Slide 19

THREAD SYNCHRONIZATION
In MPI, exchange of data between processes implies synchronization through the message metaphor.
In OpenMP, threads exchange data through shared parts of memory.
Explicit synchronization is needed to coordinate access to sharedmemory.

Data Race
A data race occurs when

multiple threads write to the samememory unit without synchronization or
at least one thread writes to and at least one thread reads from the samememory unit without
synchronization.

Data races result in unspecified program behavior.
OpenMP offers several synchronization mechanism which range from high-level/general to low-level/specialized.

Member of the Helmholtz Association March 18-20 2024 Slide 20

THE BARRIER CONSTRUCT [OpenMP-5.2, 15.3.1]
C #pragma omp barrier

F0
8 !$omp barrier

Threads are only allowed to continue execution of code after the barrier once all threads in the current team
have reached the barrier.
A barrier region must be executed by all threads in the current team or none.

Member of the Helmholtz Association March 18-20 2024 Slide 21

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association March 18-20 2024 Slide 22

THE CRITICAL CONSTRUCT [OpenMP-5.2, 15.2]
C

#pragma omp critical [(name)]
structured-block

F0
8

!$omp critical [(name)]
structured-block

!$omp end critical [(name)]

Execution of critical regions with the same name are restricted to one thread at a time.
name is a compile time constant.
In C, names live in their own name space.
In Fortran, names of critical regions can collide with other identifiers.

Member of the Helmholtz Association March 18-20 2024 Slide 23

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

ORDERED DIRECTIVE
The ordered directive specifies that iterations of the enclosed loop will be executed in the same order as if they
were executed on a serial processor.

C

#pragma omp for ordered [clauses...]
(loop region)
#pragma omp ordered newline

structured_block
(endo of loop region)

F0
8

!$OMP DO ORDERED [clauses...]
(loop region)
!$OMP ORDERED

structured_block
!$OMP END ORDERED
(end of loop region)

!$OMP END DO

Member of the Helmholtz Association March 18-20 2024 Slide 25

ORDERED DIRECTIVE
The ordered directive specifies that iterations of the enclosed loop will be executed in the same order as if they
were executed on a serial processor.

C

#pragma omp for ordered [clauses...]
(loop region)
#pragma omp ordered newline

structured_block
(endo of loop region)

An ordered directive can only appear in the dynamic extent of the for or parallel for (C/C++) directives and
equivalently DO or PARALLEL DO (Fortran) directives.

A loop which contains an ordered directive, must be a loop with an ordered clause.

Member of the Helmholtz Association March 18-20 2024 Slide 26

THE ATOMIC AND FLUSH CONSTRUCTS [OpenMP-5.2, 15.8.4,
15.8.5]

barrier, critical, and locks implement synchronization between general blocks of code
If blocks become very small, synchronization overhead could become an issue
The atomic and flush constructs implement low-level, fine grained synchronization for certain limited
operations on scalar variables:

read
write
update, writing a new value based on the old value
capture, like update and the old or new value is available in the subsequent code

Correct use requires knowledge of the OpenMP Memory Model [OpenMP-5.2, 1.4]
See also: C11 and C++11 Memory Models

Member of the Helmholtz Association March 18-20 2024 Slide 27

Part III: Worksharing

Member of the Helmholtz Association

WORKSHARING CONSTRUCTS
Decompose work for concurrent execution by multiple threads
Used inside parallel regions
Available worksharing constructs:

single and sections construct
loop construct
workshare construct
taskworksharing

Member of the Helmholtz Association March 18-20 2024 Slide 28

THE SINGLE CONSTRUCT [OpenMP-5.2, 11.1]
C

#pragma omp single [clause[[,] clause]...]
structured-block

F0
8

!$omp single [clause[[,] clause]...]
structured-block

!$omp end single [end_clause[[,] end_clause]...]

The structured block is executed by a single thread in the encountering team.
Permissible clauses are firstprivate, private, copyprivate and nowait.
nowait and copyprivate are end_clauses in Fortran.

Member of the Helmholtz Association March 18-20 2024 Slide 29

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 30

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 30

WORK SHARING CONSTRUCT: SECTIONS DIRECTIVE
The sections directive specifies that the enclosed section(s) of code are divided among the threads of a team.

C

#pragma omp sections [clause ...] newline
{

#pragma omp section newline
structured_block

#pragma omp section newline
structured_block

}

F0
8

!$OMP SECTIONS [clause ...]
!$OMP SECTION
structured_block

!$OMP SECTION
structured_block

!$OMP END SECTIONS

Member of the Helmholtz Association March 18-20 2024 Slide 31

WORK SHARING CONSTRUCT: SECTIONS DIRECTIVE
The sections directive specifies that the enclosed section(s) of code are divided among the threads of a team.

C

#pragma omp sections [clause ...] newline
{

#pragma omp section newline
structured_block

#pragma omp section newline
structured_block

}

Multiple section directives are nested within a sections directive.
Calculations done in the individual section(s) must be independent(!)
Each section is executed by one thread in the team, a thread can execute more than one section.

Represents a type of functional parallelism.

Member of the Helmholtz Association March 18-20 2024 Slide 32

IMPLICIT BARRIERS & THE NOWAIT CLAUSE [OpenMP-5.2,
15.3.2, 15.6]

Worksharing constructs (and the parallel construct) contain an implied barrier at their exit.
The nowait clause can be used on worksharing constructs to disable this implicit barrier.

Member of the Helmholtz Association March 18-20 2024 Slide 33

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 34

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association March 18-20 2024 Slide 34

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 34

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 34

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association March 18-20 2024 Slide 34

THE COPYPRIVATE CLAUSE [OpenMP-5.2, 5.7.2]
* copyprivate(list)

list contains variables that are private in the enclosing parallel region.
At the end of the single construct, the values of all list items on the single thread are copied to all other
threads.
E.g. serial initialization
copyprivate cannot be combined with nowait.

Member of the Helmholtz Association March 18-20 2024 Slide 35

WORKSHARING-LOOP CONSTRUCT [OpenMP-5.2, 11.5]
C

#pragma omp for [clause[[,] clause]...]
for-loops

F0
8

!$omp do [clause[[,] clause]...]
do-loops

[!$omp end do [nowait]]

Declares the iterations of a loop to be suitable for concurrent execution onmultiple threads.

Data-environment clauses

private
firstprivate

lastprivate
reduction

Worksharing-Loop-specific clauses

schedule
collapse

Member of the Helmholtz Association March 18-20 2024 Slide 36

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

THE COLLAPSE CLAUSE [OpenMP-5.2, 4.4.3]
* collapse(n)

The loop directive applies to the outermost loop of a set of nested loops, by default
collapse(n) extends the scope of the loop directive to the n outer loops
All associated loops must be perfectly nested, i.e.:

C

for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {

// ...
}

}

Member of the Helmholtz Association March 18-20 2024 Slide 38

THE SCHEDULE CLAUSE [OpenMP-5.2, 11.5.3]
* schedule(kind[, chunk_size])

Determines how the iteration space is divided into chunks and how these chunks are distributed among threads.
static Divide iteration space into chunks of chunk_size iterations and distribute them in a round-robin

fashion among threads. If chunk_size is not specified, chunk size is chosen such that each thread gets
at most one chunk.

dynamic Divide into chunks of size chunk_size (defaults to 1). When a thread is done processing a chunk it
acquires a new one.

guided Like dynamic but chunk size is adjusted, starting with large sizes for the first chunks and decreasing to
chunk_size (default 1).

auto Let the compiler and runtime decide.
runtime Schedule is chosen based on ICV run-sched-var.
If no schedule clause is present, the default schedule is implementation defined.

Member of the Helmholtz Association March 18-20 2024 Slide 39

COMBINED CONSTRUCTS [OpenMP-5.2, 17]
Some constructs that often appear as nested pairs can be combined into one construct, e.g.

C

#pragma omp parallel
#pragma omp for
for (...; ...; ...) {
...

}

can be turned into

C

#pragma omp parallel for
for (...; ...; ...) {
...

}

Similarly, parallel and workshare can be combined.
Combined constructs usually accept the clauses of either of the base constructs.

Member of the Helmholtz Association March 18-20 2024 Slide 40

EXERCISES
Ex
er
ci
se

1
–
He

llo
W
or
ld 1.1 Hello World & Setting number of threads

Compile and execute the file openmp_hello_world.{c|f90}. It contains a ‘hello world’ from all
available OpenMP threads.

Howmany OpenMP threads are used? Implement different ways to set the number of OpenMP threads. Which
way overwrites which other? Make a hierarchical list.

Member of the Helmholtz Association March 18-20 2024 Slide 41

EXERCISES
Ex
er
ci
se

2
–
M
an

ua
lw

or
k
sh
ar
in
g 2.1 Manual work sharing

Compile and execute the file openmp_ws_manual.{c|f90}. It containes a small loop inside parallel
region.

Implement manual worksharing using omp_get_thread_num(), omp_get_num_threads() and
division operations. If the equal distribution is not possible assign reminder iterations to the last thread.

Member of the Helmholtz Association March 18-20 2024 Slide 42

EXERCISES
Ex
er
ci
se

3
–
Ra

ce
Co

nd
iti
on

s 3.1 A Simple Sum

Compile and execute the file openmp_simple_sum.{c|f90}. It containes a serial version of a simple sum
from 0 to large_number.

Implement an OpenMP parallelised version of the loop.

What result do you get? How long does it take? How does the runtime scale with the number of OpenMP
threads and the value of large_number (degrees of freedom)?

Member of the Helmholtz Association March 18-20 2024 Slide 43

EXERCISES
Ex
er
ci
se

4
–
Ra

ce
Co

nd
iti
on

s

4.1 A Simple Sum

Let’s return to the example in openmp_simple_sum.{c|f90}. What changes can you do to the code to
avoid the race condition?

What result do you get? How long does it take? How does the runtime scale with the number of OpenMP
threads and the matrix size (degrees of freedom)?

4.2 Double Loop Tensor Contraction

Compile and execute the file openmp_double_loop.{c|f90}. It containes a serial version of a double
contraction for a second-rank tensor initialised with random values between 0 and 1.

Implement an OpenMP parallelised version of the double loop.

What result do you get? How long does it take? How does the runtime scale with the number of OpenMP
threads and the matrix size (degrees of freedom)?

Member of the Helmholtz Association March 18-20 2024 Slide 44

EXERCISES
Ex
er
ci
se

5
–
Da

ta
at
tr
ib
ut
e
cl
au

se
s 5.1 Data attribute clauses

Compile and execute the file openmp_data.{c|f90}.

Try to understand what is wrong, which data should be shared/private.

What first/lastprivate suppose to do?

Set default(none) clause. What has changed?

Experiment!

Member of the Helmholtz Association March 18-20 2024 Slide 45

EXERCISES
Ex
er
ci
se

6
–
Sc
he

du
lin

g 6.1 Scheduling

Compile and execute the file openmp_scheduling.{c|f90}.

Play with various variants, e.g. array size, number of threads, chunk size.

What was the fastest implementation? Can you explain results?

Member of the Helmholtz Association March 18-20 2024 Slide 46

	Introduction to OpenMP
	Overview
	Hello World

	Low-Level OpenMP Concepts
	Introduction
	Data Environment
	Datasharing Attribute Clauses
	Thread Synchronization

	Worksharing
	Introduction
	The single construct
	The loop construct
	loop Clauses
	Combined Constructs
	Exercises

