
MPI ONBOARDING
November 4 2024 Ilya Zhukov Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: First Steps with MPI

Member of the Helmholtz Association

WHAT IS MPI?
MPI (Message-Passing Interface) is a message-passing library interface specification. […] MPI addresses
primarily the message-passing parallel programming model, in which data is moved from the address space
of one process to that of another process through cooperative operations on each process. (MPI Forum1)

Industry standard for a message-passing programmingmodel
Provides specifications (no implementations)
Implemented as a library with language bindings for Fortran and C
Portable across different computer architectures

Current version of the standard: 4.0 (June 2021)

1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 4.0. June 9, 2021. URL:
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Member of the Helmholtz Association November 4 2024 Slide 1

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

BRIEF HISTORY
<1992 several message-passing libraries were developed, PVM, P4,…
1992 At SC92, several developers for message-passing libraries agreed to develop a standard for message-passing
1994 MPI-1.0 standard published
1997 MPI-2.0 standard adds process creation andmanagement, one-sided communication, extended collective

communication, external interfaces and parallel I/O
2008 MPI-2.1 combines MPI-1.3 and MPI-2.0

2009 MPI-2.2 corrections and clarifications with minor extensions

2012 MPI-3.0 nonblocking collectives, new one-sided operations, Fortran 2008 bindings

2015 MPI-3.1 nonblocking collective I/O

2021 MPI-4.0 large counts, persistent collective communication, partitioned communication, session model

Member of the Helmholtz Association November 4 2024 Slide 2

PROCESS ORGANIZATION [MPI-4.0, 7.2]

Process
An MPI program consists of autonomous processes, executing their own code, in an MIMD style.

Rank
A unique number assigned to each process within a group (start at 0)

Group

An ordered set of process identifiers

Context
A property that allows the partitioning of the communication space

Communicator
Scope for communication operations within or between groups, combines the concepts of group and context

COMPILING & LINKING [MPI-4.0, 19.1.7]
MPI libraries or system vendors usually ship compiler wrappers that set search paths and required libraries, e.g.:

C Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI
$ mpicc foo.c -o foo
$ # Vendor specific wrapper for IBM's XL C compiler on BG/Q
$ bgxlc foo.c -o foo

Fortran Compiler Wrappers

$ # Generic compiler wrapper shipped with e.g. OpenMPI
$ mpifort foo.f90 -o foo
$ # Vendor specific wrapper for IBM's XL Fortran compiler on BG/Q
$ bgxlf90 foo.f90 -o foo

However, neither the existence nor the interface of these wrappers is mandated by the standard.

Member of the Helmholtz Association November 4 2024 Slide 4

PROCESS STARTUP [MPI-4.0, 11.5]
The MPI standard does not mandate amechanism for process startup. It suggests that a command mpiexecwith the
following interface should exist:

Process Startup

$ # startup mechanism suggested by the standard
$ mpiexec -n <numprocs> <program>
$ # Slurm startup mechanism as found on JSC systems
$ srun -n <numprocs> <program>

Member of the Helmholtz Association November 4 2024 Slide 5

LANGUAGE BINDINGS [MPI-4.0, 19, A]

C Language Bindings

C #include <mpi.h>

Fortran Language Bindings

Consistent with F08 standard; good type-checking; highly recommended

F0
8 use mpi_f08

Not consistent with standard; so-so type-checking; not recommended

F9
0 use mpi

Not consistent with standard; no type-checking; strongly discouraged

F7
7 include 'mpif.h'

Member of the Helmholtz Association November 4 2024 Slide 6

MPI4PY HINTS
All exercises in the MPI part can be solved using Python with the mpi4py package. The slides do not show Python
syntax, so here is a translation guide from the standard bindings to mpi4py.

Everything lives in the MPImodule (from mpi4py import MPI).
Constants translate to attributes of that module: MPI_COMM_WORLD is MPI.COMM_WORLD.
Central types translate to Python classes: MPI_Comm is MPI.Comm.
Functions related to point-to-point and collective communication translate to methods on MPI.Comm:
MPI_Send becomes MPI.Comm.Send.
Functions related to I/O translate to methods on MPI.File: MPI_File_write becomes
MPI.File.Write.
Communication functions come in two flavors:

high level, uses pickle to (de)serialize python objects, method names start with lower case letters, e.g.
MPI.Comm.send,
low level, uses MPI Datatypes and Python buffers, method names start with upper case letters, e.g.
MPI.Comm.Scatter.

See also https://mpi4py.readthedocs.io and the built-in Python help().

Member of the Helmholtz Association November 4 2024 Slide 7

https://mpi4py.readthedocs.io

OTHER LANGUAGE BINDINGS
Besides the official bindings for C and Fortran mandated by the standard, unofficial bindings for other programming
languages exist:

C++ Boost.MPI
MATLAB Parallel Computing Toolbox
Python pyMPI, mpi4py, pypar, MYMPI, …

R Rmpi, pdbMPI
julia MPI.jl
.NET MPI.NET
Java mpiJava, MPJ, MPJ Express

Andmany others, ask your favorite search engine.

Member of the Helmholtz Association November 4 2024 Slide 8

WORLD ORDER IN MPI

Program starts as 𝑁 distinct processes.
Stream of instructions might be different for each process.
Each process has access to its own private memory.
Information is exchanged between processes via messages.
Processes may consist of multiple threads.

𝑝0 𝑝1 𝑝2 …

Member of the Helmholtz Association November 4 2024 Slide 9

SERIAL CONTROL FLOW

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 10

SERIAL CONTROL FLOW

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 10

SERIAL CONTROL FLOW

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 10

SERIAL CONTROL FLOW

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association November 4 2024 Slide 10

SERIAL CONTROL FLOW

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association November 4 2024 Slide 10

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 11

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 11

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Member of the Helmholtz Association November 4 2024 Slide 11

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!

Member of the Helmholtz Association November 4 2024 Slide 11

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!
Hello world!

Member of the Helmholtz Association November 4 2024 Slide 11

PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Process 1
program example
statement1
if .true. then
print *, "Hello world!"

else
print *, "Nonsense!"

end if
statement4

end program

Console

Hello world!
Hello world!

Member of the Helmholtz Association November 4 2024 Slide 11

INITIALIZATION [MPI-4.0, 11.2.1, 11.2.3]
Initialize MPI library, needs to happen before most other MPI functions can be used

C int MPI_Init(int *argc, char ***argv)

F0
8 MPI_Init(ierror)

integer, optional, intent(out) :: ierror

Exception (can be used before initialization)

C int MPI_Initialized(int* flag)

F0
8

MPI_Initialized(flag, ierror)
logical, intent(out) :: flag
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 12

FINALIZATION [MPI-4.0, 11.2.2, 11.2.3]
Finalize MPI library when you are done using its functions

C int MPI_Finalize(void)

F0
8 MPI_Finalize(ierror)

integer, optional, intent(out) :: ierror

Exception (can be used after finalization)

C int MPI_Finalized(int *flag)

F0
8

MPI_Finalized(flag, ierror)
logical, intent(out) :: flag
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 13

PREDEFINED COMMUNICATORS
After MPI_Init has been called, MPI_COMM_WORLD is a valid handle to a predefined communicator that includes
all processes available for communication. Additionally, the handle MPI_COMM_SELF is a communicator that is
valid on each process and contains only the process itself.

C

MPI_Comm MPI_COMM_WORLD;
MPI_Comm MPI_COMM_SELF;

F0
8 type(MPI_Comm) :: MPI_COMM_WORLD

type(MPI_Comm) :: MPI_COMM_SELF

Member of the Helmholtz Association November 4 2024 Slide 14

COMMUNICATOR SIZE [MPI-4.0, 7.4.1]
Determine the total number of processes in a communicator

C int MPI_Comm_size(MPI_Comm comm, int *size)

F0
8

MPI_Comm_size(comm, size, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(out) :: size
integer, optional, intent(out) :: ierror

Examples

C

int size;
int ierror = MPI_Comm_size(MPI_COMM_WORLD, &size);

F0
8 integer :: size

call MPI_Comm_size(MPI_COMM_WORLD, size)

Member of the Helmholtz Association November 4 2024 Slide 15

PROCESS RANK [MPI-4.0, 7.4.1]
Determine the rank of the calling process within a communicator

C int MPI_Comm_rank(MPI_Comm comm, int *rank)

F0
8

MPI_Comm_rank(comm, rank, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(out) :: rank
integer, optional, intent(out) :: ierror

Examples

C

int rank;
int ierror = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

F0
8 integer :: rank

call MPI_Comm_rank(MPI_COMM_WORLD, rank)

Member of the Helmholtz Association November 4 2024 Slide 16

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1
process 0 of 2

MORE PARALLEL CONTROL FLOW (IN MPI)

Process 0
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Process 1
program example
integer :: r, s
call MPI_Comm_rank(..., r)
call MPI_Comm_size(..., s)
if (r == 0) then
print *, "process", r, "of", s

else
print *, "process", r

end if
statement

end program

Console

process 1
process 0 of 2

Part II: Blocking Point-to-Point Communication

Member of the Helmholtz Association

MESSAGE PASSING

be
fo
re

aft
er

𝜋

𝜋 𝜋

Member of the Helmholtz Association November 4 2024 Slide 18

BLOCKING & NONBLOCKING PROCEDURES

Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed to reuse resources specified
in the call to the procedure.

Nonblocking

If a procedure is nonblocking it will return as soon as possible. However, the user is not allowed to reuse resources
specified in the call to the procedure before the communication has been completed using an appropriate
completion procedure.

Examples:
Blocking: Telephone callPhone
Nonblocking: Email@

Member of the Helmholtz Association November 4 2024 Slide 19

PROPERTIES
Communication between two processes within the same communicator

A process can sendmessages to itself.

A source process sends a message to a destination process using an MPI send routine
A destination process needs to post a receive using an MPI receive routine
The source process and the destination process are specified by their ranks in the communicator
Every message sent with a point-to-point operation needs to bematched by a receive operation

Member of the Helmholtz Association November 4 2024 Slide 20

SENDINGMESSAGES [MPI-4.0, 3.2.1]
* MPI_Send(<buffer>, <destination>)

C

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)↪

F0
8

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count, dest, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 21

MESSAGES [MPI-4.0, 3.2.2, 3.2.3]
Amessage consists of two parts:

Envelope

Source process source
Destination process dest
Tag tag
Communicator comm

Data
Message data is read from/written to buffers specified by:

Address in memory buf
Number of elements found in the buffer count
Structure of the data datatype

Member of the Helmholtz Association November 4 2024 Slide 22

DATA TYPES [MPI-4.0, 3.2.2, 3.3, 5.1]

Data Type

Describes the structure of a piece of data

Basic Data Types

Named by the standard, most correspond to basic data types of C or Fortran
C type MPI basic data type

signed int MPI_INT
float MPI_FLOAT
char MPI_CHAR
…

Fortran type MPI basic data type

integer MPI_INTEGER
real MPI_REAL
character MPI_CHARACTER
…

Derived Data Type

Data types which are not basic datatypes. These can be constructed from other (basic or derived) datatypes.

Member of the Helmholtz Association November 4 2024 Slide 23

RECEIVINGMESSAGES [MPI-4.0, 3.2.4]
* MPI_Recv(<buffer>, <source>) -> <status>

C

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)↪

F0
8

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
type(*), dimension(..) :: buf
integer, intent(in) :: count, source, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

count specifies the capacity of the buffer
Wildcard values are permitted (MPI_ANY_SOURCE & MPI_ANY_TAG)

Member of the Helmholtz Association November 4 2024 Slide 24

THE MPI_STATUS TYPE [MPI-4.0, 3.2.5]
Contains information about receivedmessages

C

MPI_Status status;
status.MPI_SOURCE
status.MPI_TAG
status.MPI_ERROR F0

8

type(MPI_status) :: status
status%MPI_SOURCE
status%MPI_TAG
status%MPI_ERROR

C

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int
*count)↪

F0
8

MPI_Get_count(status, datatype, count, ierror)
type(MPI_Status), intent(in) :: status
type(MPI_Datatype), intent(in) :: datatype
integer, intent(out) :: count
integer, optional, intent(out) :: ierror

Pass MPI_STATUS_IGNORE to MPI_Recv if not interested.

Member of the Helmholtz Association November 4 2024 Slide 25

Part III: Nonblocking Point-to-Point Communication

Member of the Helmholtz Association

BLOCKING & NONBLOCKING PROCEDURES

Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed to reuse resources specified
in the call to the procedure.

Nonblocking

If a procedure is nonblocking it will return as soon as possible. However, the user is not allowed to reuse resources
specified in the call to the procedure before the communication has been completed using an appropriate
completion procedure.

Examples:
Blocking: Telephone callPhone
Nonblocking: Email@

Member of the Helmholtz Association November 4 2024 Slide 26

RATIONALE [MPI-4.0, 3.7]

Premise
Communication operations are split into start and completion. The start routine produces a request handle that
represents the in-flight operation and is used in the completion routine. The user promises to refrain from
accessing the contents of message buffers while the operation is in flight.

Benefit
A single process can have multiple nonblocking operations in flight at the same time. This enables communication
patterns that would lead to deadlock if programmed using blocking variants of the same operations. Also, the
additional leeway given to the MPI library may be utilized to, e.g.:

overlap computation and communication
overlap communication
pipeline communication
elide usage of buffers

Member of the Helmholtz Association November 4 2024 Slide 27

NONBLOCKING SEND [MPI-4.0, 3.7.2]
* MPI_Isend(<buffer>, <destination>) -> <request>

C

int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)↪

F0
8

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
type(*), dimension(..), intent(in), asynchronous :: buf
integer, intent(in) :: count, dest, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 28

NONBLOCKING RECEIVE [MPI-4.0, 3.7.2]
* MPI_Irecv(<buffer>, <source>) -> <request>

C

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Request *request)↪

F0
8

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
type(*), dimension(..), asynchronous :: buf
integer, intent(in) :: count, source, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 29

WAIT [MPI-4.0, 3.7.3]
* MPI_Wait(<request>) -> <status>

C int MPI_Wait(MPI_Request *request, MPI_Status *status)

F0
8

MPI_Wait(request, status, ierror)
type(MPI_Request), intent(inout) :: request
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Blocks until operation associated with request is completed
To wait for the completion of several pending operations
MPI_Waitall All events complete

MPI_Waitsome At least one event completes
MPI_Waitany Exactly one event completes

Member of the Helmholtz Association November 4 2024 Slide 30

TEST [MPI-4.0, 3.7.3]
* MPI_Test(<request>) -> <status>?

C int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

F0
8

MPI_Test(request, flag, status, ierror)
type(MPI_Request), intent(inout) :: request
logical, intent(out) :: flag
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Does not block
flag indicates whether the associated operation has completed
Test for the completion of several pending operations
MPI_Testall All events complete

MPI_Testsome At least one event completes
MPI_Testany Exactly one event completes

Member of the Helmholtz Association November 4 2024 Slide 31

Part IV: Collective Communication

Member of the Helmholtz Association

COLLECTIVE [MPI-4.0, 2.4, 6.1]

Collective
A procedure is collective if all processes in a group need to invoke the procedure.

Collective communication implements certain communication patterns that involve all processes in a group
Synchronization may or may not occur (except for MPI_Barrier)
No tags are used
No MPI_Status values are returned
Receive buffer size must match the total amount of data sent (c.f. point-to-point communication where receive
buffer capacity is allowed to exceed the message size)
Point-to-point and collective communication do not interfere

Member of the Helmholtz Association November 4 2024 Slide 32

CLASSIFICATION [MPI-4.0, 6.2.2]

One-to-all
MPI_Bcast, MPI_Scatter, MPI_Scatterv

All-to-one
MPI_Gather, MPI_Gatherv, MPI_Reduce

All-to-all
MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv, MPI_Alltoallw,
MPI_Allreduce, MPI_Reduce_scatter, MPI_Barrier

Other
MPI_Scan, MPI_Exscan

Member of the Helmholtz Association November 4 2024 Slide 33

REDUCE [MPI-4.0, 6.9.1]
Explanation

be
fo
re

aft
er

1 2 3 4 5 6
7 8 9

10 11 12

1 2 3 4 5 6
7 8 9

22 26 30
10 11 12

+ + +

Member of the Helmholtz Association November 4 2024 Slide 34

REDUCE [MPI-4.0, 6.9.1]
Signature

* MPI_Reduce(<send buffer>, <receive buffer>, <operation>, <root>)

C

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_Comm comm)↪

F0
8

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
type(*), dimension(..), intent(in) :: sendbuf
type(*), dimension(..) :: recvbuf
integer, intent(in) :: count, root
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Op), intent(in) :: op
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association November 4 2024 Slide 34

PREDEFINED OPERATIONS [MPI-4.0, 6.9.2]
Name Meaning

MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bitwise and
MPI_LOR Logical or
MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and the first rank that holds it [MPI-4.0, 6.9.4]
MPI_MINLOC Minimum and the first rank that holds it [MPI-4.0, 6.9.4]

Member of the Helmholtz Association November 4 2024 Slide 35

REDUCTION VARIANTS [MPI-4.0, 6.9 – 6.11]
Routines with extended or combined functionality:

MPI_Allreduce: perform a global reduction and copy the result onto all processes
MPI_Reduce_scatter: perform a global reduction then copy different parts of the result onto all processes
MPI_Scan: perform a global prefix reduction, include own data in result

Member of the Helmholtz Association November 4 2024 Slide 36

BROADCAST [MPI-4.0, 6.4]

be
fo
re

aft
er

𝜋

𝜋 𝜋 𝜋 𝜋

Member of the Helmholtz Association November 4 2024 Slide 37

SCATTER [MPI-4.0, 6.6]

be
fo
re

aft
er

A B C D

A B C D

B
A C D

Member of the Helmholtz Association November 4 2024 Slide 38

GATHER [MPI-4.0, 6.5]

be
fo
re

aft
er

B
A C D

B

A B C D
A C D

Member of the Helmholtz Association November 4 2024 Slide 39

GATHER-TO-ALL [MPI-4.0, 6.7]

be
fo
re

aft
er

A B C D

A

A B C D

B

A B C D

C

A B C D

D

A B C D

Member of the Helmholtz Association November 4 2024 Slide 40

ALL-TO-ALL SCATTER/GATHER [MPI-4.0, 6.8]

be
fo
re

aft
er

A B C D E F G H I J K L M N O P

A B C D

A E I M

E F G H

B F J N

I J K L

C G K O

M N O P

D H L P

Member of the Helmholtz Association November 4 2024 Slide 41

DATAMOVEMENT SIGNATURES
Single Message Size

* MPI_Collective(<send buffer>, <receive buffer>, <root or communicator>)

Both send buffer and receive buffer are address, count, datatype
In One-to-all / All-to-one pattern

Specify root process by rank number
send buffer / receive buffer is only read / written on root process

Buffers hold either one or 𝑛 messages, where 𝑛 is the number of processes
If multiple messages are sent from / received into a buffer, associated count specifies the number of elements
in a single message

Member of the Helmholtz Association November 4 2024 Slide 42

MESSAGE ASSEMBLY
Single Message Size

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 1 2 3

Message 4 5 6 7

Buffer 0 1 2 3 ? ? ? ? ? ? ...

Buffer 4 5 6 7 ? ? ? ? ? ? ...

MPI_Scatter(sendbuffer, 4, MPI_INT, ...)

MPI_Scatter(..., receivebuffer, 4, MPI_INT, ...)

Member of the Helmholtz Association November 4 2024 Slide 43

DATAMOVEMENT VARIANTS [MPI-4.0, 6.5 – 6.8]
Routines with variable counts (and datatypes):

MPI_Scatterv: scatter into parts of variable length
MPI_Gatherv: gather parts of variable length
MPI_Allgatherv: gather parts of variable length onto all processes
MPI_Alltoallv: exchange parts of variable length between all processes
MPI_Alltoallw: exchange parts of variable length and datatype between all processes

Member of the Helmholtz Association November 4 2024 Slide 44

DATAMOVEMENT SIGNATURES
Varying Message Size

C

int MPI_Scatterv(const void *sendbuf, const int *sendcounts, const int
*displs, MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

↪

↪

Same high-level pattern as before.

In addition to send/recvbuffer following is specified:
send/recvcounts array of length: number of MPI tasks that holds an individual count of number of
message elements to be send
send/recvdispls array of length: number of MPI tasks that holds the displacements (in units of
message elements) from the beginning of the buffer at which to start taking elements

Note: Overlapping blocks
The blocks for different messages in send buffers can overlap. In receive buffers, they must not.

Member of the Helmholtz Association November 4 2024 Slide 45

MESSAGE ASSEMBLY
Varying Message Size

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 1 2 3

Message 5 6

Buffer 1 2 3 ? ? ? ? ? ? ? ...

Buffer 5 6 ? ? ? ? ? ? ? ? ...

MPI_Scatterv(sendbuffer, { 3, 2 }, { 1, 5 }, MPI_INT, ...)

MPI_Scatterv(..., receivebuffer, (3 | 2), MPI_INT, ...)

Member of the Helmholtz Association November 4 2024 Slide 46

BARRIER [MPI-4.0, 6.3]
C int MPI_Barrier(MPI_Comm comm)

F0
8

MPI_Barrier(comm, ierror)
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Explicitly synchronizes all processes in the group of a communicator by blocking until all processes have entered the
procedure.

Member of the Helmholtz Association November 4 2024 Slide 47

BARRIER CONTROL FLOW

Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association November 4 2024 Slide 48

BARRIER CONTROL FLOW

Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association November 4 2024 Slide 48

BARRIER CONTROL FLOW

Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association November 4 2024 Slide 48

BARRIER CONTROL FLOW

Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association November 4 2024 Slide 48

BARRIER CONTROL FLOW

Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association November 4 2024 Slide 48

EXERCISE 1
Ex
er
ci
se

1
–
Fi
rs
tS

te
ps

1.1 Output of Ranks

Write a program print_rank.{c|cxx|f90|py} that has each process printing its rank.
I am process 0
I am process 1
I am process 2

Use: MPI_Init, MPI_Finalize, MPI_Comm_rank

1.2 Output of ranks and total number of processes

Write a program print_rank_conditional.{c|cxx|f90|py} in such a way that process 0 writes out
the total number of processes
I am process 0 of 3
I am process 1
I am process 2

Use: MPI_Comm_size

EXERCISE 2
Ex
er
ci
se

2
–
Co

lle
ct
iv
e
Co

m
m
un

ic
at
io
n 2.1 Do it yourself

The template file collectives.{c|F90|py} is provided for you.
Write your own MPI parallel code with the following criteria:

The MPI program should produce a sum of the rank of all processes.
All processes should carry the summed value.
The MPI program should only contain collective calls.
All processes then prints the following message:
I am rank m , I have obtained the sum of all rank=i.

There are multiple ways to achieve the end result. Experiment with different collective calls.

Member of the Helmholtz Association November 4 2024 Slide 50

	First Steps with MPI
	What is MPI?
	Terminology
	Infrastructure
	Basic Program Structure

	Blocking Point-to-Point Communication
	Introduction
	Sending
	Receiving

	Nonblocking Point-to-Point Communication
	Introduction
	Start
	Completion

	Collective Communication
	Introduction
	Reductions
	Reduction Variants
	Data Movement
	Data Movement Variants
	Synchronization
	Exercises

