
PARALLEL I/O AND PORTABLE DATA FORMATS

04.11.2024 I ILYA ZHUKOV

INTRODUCTION AND PARALLEL I/O STRATEGIES

Mass storage hierarchy
Four levels of storage hierarchy

7

TERTIARY
STORAGE

OFFLINE
STORAGE

• Volatile memory
• Directly accessed by CPU
• Holds active data & programs
• Examples: CPU register set, caches,

system memory

PRIMARY
STORAGE

SECONDARY
STORAGE

• Non-volatile memory
• Not accessible by CPU directly,

mediated by OS
• Granularity limited to fixed-size blocks
• Examples: HDD, SSD

• Not immediately accessible or powered-
off, can be quickly enabled for online
usage

• Examples: tapes

• Requires human intervention
• Provides additional “air gap“ security level
• Examples: DVD, external disks

Ba
nd

w
id

th
/p

ric
e

C
ap

ac
ity

/re
te

nt
io

n
tim

e

How Hard Disk Drive (HDD) works

8

• Uses magnetic disks (platters) to store data.
• Read/Write head moves over the platters to read and

write data.
• Spindle motor spins the platters at high speeds for

quick access.
• Actuator arm positions the read/write head accurately

over the desired track on the platter.
• Information is encoded magnetically on the surface of

the platters.
• Information on HDD is stored in blocks, which are the

smallest units of data that can be read or written.
• Sizes: from 500GB to 20TB
• Bandwidth: from 80MB/s to 250MB/s
• For more details watch YouTube video

• https://youtu.be/wtdnatmVdIg

* Picture is taken from https://www.partitionwizard.com/partitionmagic/how-does-a-hard-drive-work.html

https://youtu.be/wtdnatmVdIg

HDD: advantages and disadvantages

9

* Picture is taken from https://www.partitionwizard.com/partitionmagic/how-does-a-hard-drive-work.html

+ Cost-effective: cheaper per GB compared to SSDs.
+ High capacity: available in larger storage sizes,
suitable for bulk data storage.
+ Long lifespan: can last for many years with proper use
and care.

- Slower speed: slower data access and transfer rates
compared to SSDs.
- Fragility: moving parts can be susceptible to damage
from shocks and drops.
- Power consumption: typically consumes more power
than SSDs.

How Solid State Drive (SSD) works

10

• Solid State Drives (SSDs) operate using flash memory
chips and a controller to store and manage data.

• NAND Flash Memory: the primary storage
medium in SSDs, consisting of interconnected
flash memory chips that store data using electrical
charges.

• Controller: the brain of the SSD, responsible for
managing data processing, error correction, and
storage management. It coordinates read/write
activities and interfaces with the host system.

• Cache: a high-speed RAM area used to
temporarily store frequently accessed data,
boosting read and write speeds for small files and
random access

• Common interfaces include SATA, PCIe, and
NVMe.

* Picture is taken from https://www.backblaze.com/blog/how-reliable-are-ssds/

How Solid State Drive (SSD) works II

11

* Picture is taken from https://www.backblaze.com/blog/how-reliable-are-ssds/

• SSDs store data using floating gate transistors in
memory cells.

• Data is stored as electrical charges in the memory
cells, with each cell capable of holding one to four bits
of data (SLC, MLC, TLC, or QLC).

• Sizes: from 128GB to 8TB
• Bandwidth: from 500MB/s to 12,000MB/s
• For more details watch YouTube video

• https://youtu.be/5Mh3o886qpg

https://youtu.be/5Mh3o886qpg

SSD: advantages and disadvantages

12

* Picture is taken from https://www.backblaze.com/blog/how-reliable-are-ssds/

+ Speed: SSDs are much faster than HDDs, resulting in
quicker boot times and file transfers.
+ Durability: With no moving parts, SSDs are more
resistant to physical shock and vibration.
+ Energy efficiency: SSDs consume less power and
generate less heat compared to HDDs.
+ Silent operation: The lack of moving parts makes
SSDs quieter than HDDs.
+ Compact size: SSDs come in various form factors.

- Limited lifespan: SSDs have a finite number of write
cycles.
- Higher cost compared to HDDs.
- Less storage space than HDD at comparable price
- Slower write speeds: While SSDs excel at reading
data, they may take longer to save data compared to
HDDs

What is a filesystem?

• In Linux and most of OS data are stored in files.

• File is a collection of data stored as a single object on a disk.

• Directory contains files and stores on a disk.
• Hierachy of directories and files comprises a filesystem.
• Path is the unique location of a file or directory within a filesystem.

• Notation /root/etc/foto

• There are two types of paths, i.e. absolute and relative.

• Common operations: create, delete, read, write, copy, move.

13

/root

/usr /etc

/foo /bar text foto

What is metadata?

• Metadata is essentially “data about data”. It provides essential information about each file and directory
without holding the file contents.

• Key metadata elements

• File size: size in bytes.

• File type: specifies if it’s a regular file, directory, symbolic link, etc.

• Ownership: user ID (UID), group ID (GID) of the file owner.

• Permissions: read, write, and execute permissions for the owner, group, and others.

• Timestamps: important dates like creation (ctime), last modification (mtime), and last access (atime).

14

What is a inode?

• An inode (index node) is a data structure in Unix-like filesystems that stores metadata information about each
file and directory, excluding the filename and data itself.

• Each inode represents a file or directory and contains pointers to the file data blocks, enabling the filesystem to
locate the actual file contents on the disk.

• The inode number uniquely identifies each inode within a filesystem.

• A directory entry is a fundamental element in Linux filesystems that associates a filename with an inode
number.

15

Combine software and hardware
Global view

16

inode block Data (directory entry) block

inode Type Permissions Created Data blocks Name
2488 file rwx 10/10/2024 0,1,13 Matrix.exe
2489 file r-- 01/01/2021 3, 4, 5 42.txt

2490 directory rw- 02/07/2023 8 Notebook.py

inode section Data (directory entry) section

Combine software and hardware
Remove Matrix.exe

17

inode block Data (directory entry) block

inode Type Permissions Created Data blocks Name
2488 file rwx 10/10/2024 0,1,13 Matrix.exe
2489 file r-- 01/01/2021 3, 4, 5 42.txt

2490 directory rw- 02/07/2023 8 Notebook.py

Mark as unused

Understanding permissions

• Permissions overview
• User, Group, Others can each have:

• Read (r): View contents
• Write (w): Modify contents

• Execute (x): Run as program (or access directory)

18

• Checking permissions
$ ls -l hello_world
-rwxr-xr-x 1 zhukov1 jusers 188552 Sep 1 2022 hello_world
• Checking directory permissions
$ ls -d test_dir
drwxr-xr-x 5 zhukov1 jusers 8192 Jul 31 2023 test_dir

• Changing permissions: chmod
• Symbolic

• chmod [who][+/-][permission] <filename>
• Example: chmod u+x file.txt

• Octal
• chmod <permissions> <filename>
• Example: chmod 755 file.txt

• Permissions calculator
• https://chmodcommand.com

https://chmodcommand.com/

More utilities to test

• Display detailed metadata information
• $ stat <filename>

• Update file timestamps or create an empty file
• $ touch <filename>

• To create hard and soft links
• $ ln

• Identify associated inode
• $ ls -I <filename>

• Amount of inodes in directory (sorted)
• $ du -s --inodes * | sort –rn

• Global statistics about inode usage
• $ df -ih

19

• To find out which sub-directories consume how
much disk size
• $ du -h --max-depth=1 | sort –hr

• Set and view Access Control Lists (ACLs) for fine-
grained permissions
• $ setfacl / $ getfacl

Exercise 1

• Go to project directory /p/project1/training2403
• Create your own directory with your login name, e.g. zhukov1
• Inside this directory create two subdirectories, i.e. private and shared, and in each subdirectory create file

notes
• Modify permissions such as shared and notes are only accessible for reading for everyone

• Private is only accessible to you.

• Find a partner next to you and allow only them to modify notes in your shared directory

• Modify notes in shared directory of your partner by writing your name and organisation there

• Try to open and read information from your partner's private directory, and let them know you did!

• Play with other commands, e.g. identify inode of any file or directory, create hard/soft link to any file, etc.

20

IO500.org statistics (status from June 2024)

21

Lustre
24%

DAOS
16%

IBM Storage
Scale
11%

BeeGFS
7%

EXAScaler
6%

Others
37%

Lustre

• High-performance, distributed parallel filesystem designed for large-scale HPC environments, uses Object
Storage Targets (OSTs) and Metadata Servers (MDSs) to manage data and metadata independently.

• Advantages
• High scalability with support for petabytes of data and thousands of clients.

• Open-source and widely supported in HPC.

• Robust data management features, including snapshots and replication.

• Disadvantages
• Complex to install, configure, and maintain.

• Requires dedicated storage and network resources.

• Some performance degradation under heavy metadata workloads.

22

DAOS (Distributed Asynchronous Object Storage)

• DAOS focuses on distributing metadata across all servers to eliminate bottlenecks typical in traditional file
systems.

• Advantages
• Provides fine-grained data and metadata operations, suitable for HPC and AI workloads.

• Fully distributed architecture enhances scalability.

• Disadvantages
• Still maturing; limited adoption compared to Lustre or IBM Spectrum Scale.

• Requires modern storage and networking infrastructure.

• Can be complex to integrate into existing HPC setups.

23

IBM Spectrum Scale

• IBM Spectrum Scale (formerly GPFS) is designed for data-intensive applications, providing a scalable, high-
performance file system that supports both traditional and cloud environments.

• Advantages
• High availability and resilience through data replication and tiering.

• Supports a wide range of storage types.

• Strong integration with IBM analytics tools enhances data processing capabilities.

• Disadvantages
• Licensing costs can be high compared to open-source alternatives.

• Setup and tuning are complex, especially for heterogeneous environments.

• Performance can degrade without sufficient tuning and optimization.

24

BeeGFS

• BeeGFS is a parallel file system designed for performance and ease of use in clustered environments. It
employs a modular architecture that separates metadata from data storage to improve efficiency.

• Advantages
• User-friendly setup and management interface.

• High performance for both small and large files due to its parallel architecture.

• Flexible deployment options, suitable for various hardware configurations.

• Disadvantages
• Less mature than Lustre or IBM Spectrum Scale.

• Limited community support compared to more established systems.

• May not scale as effectively in extremely large environments as competitors.

25

Parallel I/O Strategies
One process performs I/O

26

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process
- Additional communication might be necessary
- Other processes may idle and waste computing resources during I/O time

One process performs I/O

27

Parallel I/O Pitfalls
Frequent flushing on small blocks

28

•Modern file systems in HPC have large file system blocks (e.g. 16MB)
•A flush on a file handle forces the file system to perform all pending write operations
• If application writes in small data blocks, the same file system block it has to be read and

written multiple times
•Performance degradation due to the inability to combine several write calls

Parallel I/O Strategies
Task-local files

29

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Simple to implement
+ No coordination between processes needed
+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable
- Files often need to be merged to create a canonical dataset
- File system might serialize meta data modification

Task-local files

30

Parallel I/O Pitfalls
Serialization of meta data modification

31

Example: Creating files in parallel in the same directory

The creation of 2.097.152 files costs 113.595 core hours on JUQUEEN!

Parallel file creation on JUQUEEN
0.5-28 racks, 64 tasks/node
W. Frings

• Meta-data wall on file level

• File changes by multiple processes can
cause serialization

• File meta-data management

• Locking

file i-node
indirect
blocksI/O-

client

FS blocks

Parallel I/O Strategies
Shared files

32

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O Strategies

+ Number of files is independent of number of processes
+ File can be in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties
- File layout may induce false sharing of file system blocks

Shared files

33

Parallel I/O Pitfalls
False sharing of file system blocks

34

• Data blocks of individual processes do not fill up a complete file system block

• Several processes share a file system block

• Exclusive access (e.g. write) must be serialized
• The more processes have to synchronize the more waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data
task 1

data
task 2

… …
lock

t1 t2
lock

I/O Workflow

35

• Post processing can be very time-consuming (> data creation)
• Widely used portable data formats avoid post processing

• Data transportation time can be long:
• Use shared file system for file access, avoid raw data transport
• Avoid renaming/moving of big files (can block backup)

data creation

data post processing
(merge files, switch to
different file format) visualization

Parallel I/O Pitfalls

•Endianness (byte order) of binary data
•Conversion of files might be necessary and expensive

Portability

36

2,712,847,316
=

10100001 10110010 11000011 11010100
Address Little Endian Big Endian

1000 11010100 10100001
1001 11000011 10110010
1002 10110010 11000011
1003 10100001 11010100

Parallel I/O Pitfalls

•Memory order depends on programming language
•Transpose of array might be necessary when using different programming languages in

the same workflow
•Solution: Choosing a portable data format (HDF5, NetCDF)

Portability

37

Address row-major order
(e.g. C/C++)

column-major order
(e.g. Fortran)

1000 1 1
1001 2 4
1002 3 7
1003 4 2
1004 5 5

… … …

1 2 3
4 5 6
7 8 9

Juelich STORAGE (JUST)

Page
38

hdfml

JUST

JURECA-DC
700+ Nodes

HPST

JARVIS

DEEP

JUDAC

JUZEA

JUWELS + JUWELS Booster
2600+ Nodes

JUSUF
200+ Nodes

Jülich STORAGE “JUST”

• High Performance Storage Tier (HPST): NVMe based Storage (low latency+high bandwidth)
• Large Capacity Storage Tier (LCST): IBM Storage Scale Cluster (GNR, 6th Gen. of JUST, bandwidth optimized)

• Extended Capacity Storage Tier (XCST): GPFS Building Blocks (target: capacity)
• Archive: Tape Storage Tier (Backup + GPFS & TSM-HSM)

Capacity (PB) Bandwidth Retention time

HPST
Scratch (LCST)
Data (LCST)
XCST
Archive

Decomissioned
Being phased out

JUST6
Logical view

SAN

IBM Spectrum Protect
(TSM)

JUSTTSM

IBM Spectrum Scale
(GPFS)

JUSTDATA

IBM Spectrum Scale
(GPFS)

JUSTARCHIVE

IBM Spectrum Scale
(GPFS)

JUST

HSM

Disk pool

JUSTHOME

IBM Spectrum Scale
(GPFS)

CES

IBM Spectrum Scale
(GPFS)

JUSTCOM

Future
Tape

1

Future
Tape

2

• GPFS export
• Backup
• NFS

HPC

JuNet

JUSTCES

System overview
File I/O to GPFS

41

JUST6
Physical view

7 GPFS Cluster & File System Manager

4 x 100 GE

justnsd01 justnsd02 justnsd03 justnsd04 justnsd05 justnsd10 justnsd11 justnsd12

$ARCHIVE
(HSM)

$SCRATCH

$DATA$PROJECT
$SOFTWARE

$HOME

●●●

●●●

7 Cluster Export Server (NFS)
●●●

7 TSM Server (mmbackup, hsm)
●●●

JUST6
Physical view

7 GPFS Cluster & File System Manager

4 x 100 GE

justnsd01 justnsd02 justnsd03 justnsd04 justnsd05 justnsd10 justnsd11 justnsd12

$ARCHIVE
(HSM)

$SCRATCH

$DATA$PROJECT
$SOFTWARE

$HOME

●●●

●●●

7 Cluster Export Server (NFS)
●●●

7 TSM Server (mmbackup, hsm)
●●●

• 11 x IBM SSS6000
• 7 enclosure per SSS
• 91 disks per enclosure
• 22TB HDD

• 1 x ESS3500
• 24 drives
• 7,68TB NVMe

• 7 GPFS Manager
• 7 CES Server
• 7 TSM Server

> 150PB RAW | 600GB/s

*

*

Jupiter – storage

• ExaFLASH: NVMe IBM Storage Scale (low latency+high bandwidth)
• ExaSTORE: Large Capacity Storage Tier, IBM Storage Scale Cluster (GNR, bandwidth optimized)

• Archive: Tape Storage Tier (Backup + GPFS & TSM-HSM) - Same as for JUST6

Capacity (PB) Bandwidth Retention time

ExaFLASH
Scratch (ExaSTORE)
Data (ExaSTORE)

Archive

JUPITER – Storage (Exastore)

• Gross Capacity: 308 PB; Net Capacity: 210 PB
• Bandwidth: 1.1 TB/s Write, 1.4 TB/s Read
• 22× IBM SSS6000 Building Blocks (44 servers)
• 2× NDR200 per server
• 7× JBOD enclosures, each with 91x 22 TB Spinning Disks per block
• IBM Storage Scale (aka Spectrum Scale/GPFS)

• 1 x IBM Storage Scale System 3500: 24 x 7.68 TB NVMe
• Manager and Datamover Nodes
• Exclusive for JUPITER: Integrated into InfiniBand fabric
• Same HW as JUST6 for flexibility to move HW

In kind contribution from JSC, not part of the JUPITER procurement

Page
45

Pr
el

im
in

ar
y

nu
m

be
rs

, m
ig

ht
 c

ha
ng

e
du

rin
g

in
st

al
la

tio
n

22
×

JUPITER – Storage (ExaFlash)

• Gross Capacity: 29 PB; Net Capacity: 21 PB
• Bandwidth: 2.1 TB/s Write, 3.1 TB/s Read
• 20× IBM SSS6000 Building Blocks (40 servers)
• 2× NDR400 per server
• 48× 30 TB NVMe drives per block
• IBM Storage Scale (aka Spectrum Scale/GPFS)

• Manager and Datamover Nodes
• Exclusive for JUPITER: Integrated into InfiniBand fabric

Page
46

Pr
el

im
in

ar
y

nu
m

be
rs

, m
ig

ht
 c

ha
ng

e
du

rin
g

in
st

al
la

tio
n

20×

System overview
Computational vs I/O performance

54

10

100

1000

10000

100000

Ju
n

20
07

D
ec

 2
00

7
Ju

n
20

08
D

ec
 2

00
8

Ju
n

20
09

D
ec

 2
00

9
Ju

n
20

10
D

ec
 2

01
0

Ju
n

20
11

D
ec

 2
01

1
Ju

n
20

12
D

ec
 2

01
2

Ju
n

20
13

D
ec

 2
01

3
Ju

n
20

14
D

ec
 2

01
4

Ju
n

20
15

D
ec

 2
01

5
Ju

n
20

16
D

ec
 2

01
6

Ju
n

20
17

D
ec

 2
01

7
Ju

n
20

18
D

ec
 2

01
8

Ju
n

20
19

D
ec

 2
01

9
Ju

n
20

20
D

ec
 2

02
0

Ju
n

20
21

TF
lo

p/
s

JSC T-0 system Rmax

Parallel I/O Software Stack

55

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF …

…

Sh
ar

ed

fil
e

Task-
local
files

…

NetCDF-4

SIONlib

data stored in global view in local view

GREETINGS FROM THE STORAGE TEAM
Questions?

