
PAR IO COURSE – PYTHON ML/D L (2 / 2)

2024-11-05 Jan Ebert ja.ebert@fz-juelich.de Helmholtz AI Consultant Jülich Supercomputing Centre

Member of the Helmholtz Association

mailto:ja.ebert@fz-juelich.de

Part I: Outline

Member of the Helmholtz Association

Outline

Data loading pipelines

Checkpointing

Logging

Hands-on exercise tomorrow

Exercises

Member of the Helmholtz Association 2024-11-05 Slide 1

Part II: Data loading pipelines

Member of the Helmholtz Association

Libraries and data loaders (refresher)

PyTorch: torch.utils.data.DataLoader

TensorFlow/JAX: tf.data

Worth mentioning: HuggingFace datasets as cross-framework abstraction.

Member of the Helmholtz Association 2024-11-05 Slide 2

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://www.tensorflow.org/api_docs/python/tf/data
https://huggingface.co/docs/datasets/index

Data loader overview

PyTorch TensorFlow/JAX

API torch.utils.data.DataLoader tf.data.Dataset

multiprocessing num_workers=4 num_parallel_calls=4

prefetching prefetch_factor=2 dataset.prefetch(buffer_size)

caching - dataset.cache()

memory pinning pin_memory=True -

sharding [...].DistributedSampler(dataset) dataset.shard(world_size, rank)

batching batch_size=1 dataset.batch(batch_size)

shuffling shuffle=True dataset.shuffle(buffer_size)

Some tf.data function arguments allow tf.data.AUTOTUNE for dynamic value assignment. For JAX:

jax.tree_util.tree_map(lambda t: t._numpy(), batch) and flax.jax_utils.prefetch_to_device
may prove useful.

Member of the Helmholtz Association 2024-11-05 Slide 3

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#prefetch
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#cache
https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/api_docs/python/tf/data#other-members

Prefetching

Asynchronously process future required data in a separate thread. Store it in a buffer for later.

prefetch data (CPU, bufsize 2)

host-to-device copy

training step (GPU)

1 2

1

1

3

2

2

4

3

3

5 ...

...

...

time

What would be a good general choice for the buffer size to guarantee that training and data

prefetching are always overlapped?

Answer: 2.

Member of the Helmholtz Association 2024-11-05 Slide 4

Prefetching

Asynchronously process future required data in a separate thread. Store it in a buffer for later.

prefetch data (CPU, bufsize 2)

host-to-device copy

training step (GPU)

1 2

1

1

3

2

2

4

3

3

5 ...

...

...

time

What would be a good general choice for the buffer size to guarantee that training and data

prefetching are always overlapped?

Answer: 2.

Member of the Helmholtz Association 2024-11-05 Slide 4

Shuffling

When using torch.utils.data.DistributedSampler , it is also used for shuffling.

Requires calling dataloader.sampler.set_epoch(epoch) before the data loader is iterated

each epoch; otherwise same shuffling is re-used.

Shuffling iterable-style data requires a buffer to store and sample data from. Works similar to

prefetching.

Member of the Helmholtz Association 2024-11-05 Slide 5

https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler

Interlude: Memory management

Reminder: Kernel uses virtual memory to optimize accesses to high-bandwidth physical storage.

This memory management means data is swapped in and out as required: memory is pageable.

Assign memory section as page-locked/pinned to disallow management unit from swapping it out.

Member of the Helmholtz Association 2024-11-05 Slide 6

Host-to-device transfer

Here: host = CPU, device = GPU.

Device cannot access data from host’s

pageable memory.

→ Need to explicitly assign memory

section as pinned to avoid swap-out.

For a host-to-device transfer, this means:

1 allocate page-locked buffer

2 copy host’s paged data to page-locked

buffer

3 transfer data from page-locked buffer to

device

4 free page-locked buffer.

Figure: From:

https://developer.nvidia.com/blog/
how-optimize-data-transfers-cuda-cc/

Member of the Helmholtz Association 2024-11-05 Slide 7

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

Memory pinning in practice

RAM section is pinned, i.e., configured so that it will not be swapped out.

→ Guaranteed fast access at the cost of RAM.

Can be used by PyTorch for data loading:

1 Place data on pinned CPU memory.

2 Move data to GPU immediately.

Member of the Helmholtz Association 2024-11-05 Slide 8

Part III: Checkpointing

Member of the Helmholtz Association

PyTorch serialization

Saving and loading across PyTorch versions not guaranteed.

Cross-platform portability: unsure because of Pickle usage, but looked fine from

implementation side.

Tensor data is transferred to CPU for saving.

More info in the serialization documentation:

https://pytorch.org/docs/stable/notes/serialization.html#
serialized-file-format-for-torch-save

Member of the Helmholtz Association 2024-11-05 Slide 9

https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save
https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save
https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save

PyTorch serialization

Saving and loading across PyTorch versions not guaranteed.

Cross-platform portability: unsure because of Pickle usage, but looked fine from

implementation side.

Tensor data is transferred to CPU for saving.

More info in the serialization documentation:

https://pytorch.org/docs/stable/notes/serialization.html#
serialized-file-format-for-torch-save

Member of the Helmholtz Association 2024-11-05 Slide 9

https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save
https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save
https://pytorch.org/docs/stable/notes/serialization.html#serialized-file-format-for-torch-save

Naive checkpointing

Training checkpointing = storing state (model weights, optimizer state, …) persistently to allow

resumption of training.

Naively:

1 (If model is sharded:) gather all weights on rank 0.

2 Save checkpoint file only on rank 0.

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing.

Member of the Helmholtz Association 2024-11-05 Slide 10

Naive checkpointing

Training checkpointing = storing state (model weights, optimizer state, …) persistently to allow

resumption of training.

Naively:

1 (If model is sharded:) gather all weights on rank 0.

2 Save checkpoint file only on rank 0.

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing.

Member of the Helmholtz Association 2024-11-05 Slide 10

Naive checkpointing (DDP)

GPU 1

full model

GPU 2

full model

GPU 3

full model

GPU 4

full model

copy

CPU 1

write to disk

time

Member of the Helmholtz Association 2024-11-05 Slide 11

Naive checkpointing (FSDP)

GPU 1

model shard 1

GPU 2

model shard 2

GPU 3

model shard 3

GPU 4

model shard 4

copy & gather

CPU 1

full model

write to disk

time

Member of the Helmholtz Association 2024-11-05 Slide 12

Distributed checkpointing (1/3)

Setting: we have a sharded model, i.e., each GPU contains a part of the model.

Naively, we gather the model onto one rank and then save it there.

Instead, with distributed checkpointing, just save the sharded model on each GPU. Only

applicable for bigger models that we actually shard.

→ All GPU processes write in parallel, communication is avoided.

Member of the Helmholtz Association 2024-11-05 Slide 13

Distributed checkpointing (2/3)

GPU 1

model shard 1

GPU 2

model shard 2

GPU 3

model shard 3

GPU 4

model shard 4

copy

CPU 1

write to disk

copy

CPU 2

write to disk

copy

CPU 3

write to disk

copy

CPU 4

write to disk

time

Member of the Helmholtz Association 2024-11-05 Slide 14

Distributed checkpointing (3/3)

APIs also work transparently for non-distributed checkpointing.

Models can be loaded with fewer or more ranks!

No backward compatibility guarantees!

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing.

Member of the Helmholtz Association 2024-11-05 Slide 15

Distributed checkpointing (3/3)

APIs also work transparently for non-distributed checkpointing.

Models can be loaded with fewer or more ranks!

No backward compatibility guarantees!

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing.

Member of the Helmholtz Association 2024-11-05 Slide 15

Optimizing distributed checkpointing

Default implementation writes to a different file on each rank.

→Metadata accesses!

Can implement new StorageWriter to, e.g., only write to a single file.

With fixed-size state, don’t need to communicate for each checkpoint.

Member of the Helmholtz Association 2024-11-05 Slide 16

https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.StorageWriter

Asynchronous checkpointing (1/2)

In PyTorch: Only works with distributed checkpointing.

After copying the checkpoint data to CPU, training resumes. Data is saved to disk in a separate

thread.

→ Training can continue in the meantime.

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing device-to-host copy of shard.

Member of the Helmholtz Association 2024-11-05 Slide 17

Asynchronous checkpointing (1/2)

In PyTorch: Only works with distributed checkpointing.

After copying the checkpoint data to CPU, training resumes. Data is saved to disk in a separate

thread.

→ Training can continue in the meantime.

Effects:

1 Can only save models that fit in GPU/CPU memory.

2 With sharded model: Lots of communication.

3 I/O is not distributed.

4 Training is blocked during checkpointing device-to-host copy of shard.

Member of the Helmholtz Association 2024-11-05 Slide 17

Asynchronous checkpointing (2/2)

GPU 1

model shard 1

GPU 2

model shard 2

GPU 3

model shard 3

GPU 4

model shard 4

copy

CPU 1

write to disk

in new thread

copy

CPU 2

write to disk

in new thread

copy

CPU 3

write to disk

in new thread

copy

CPU 4

write to disk

in new thread

time

Member of the Helmholtz Association 2024-11-05 Slide 18

Part IV: Logging

Member of the Helmholtz Association

Logging

Logging various metrics is key to debugging and improving training.

PyTorch, TensorFlow, and JAX “native” way: TensorBoard

PyTorch and JAX require explicit installation of the tensorboard package.

PyTorch API (requires tensorboard package):

torch.utils.tensorboard.SummaryWriter

TensorFlow/JAX API: tf.summary.create_file_writer

Member of the Helmholtz Association 2024-11-05 Slide 19

https://www.tensorflow.org/tensorboard
https://pytorch.org/docs/stable/tensorboard.html
https://www.tensorflow.org/api_docs/python/tf/summary/create_file_writer

TensorBoard in PyTorch

PyTorch

API torch.utils.tensorboard.SummaryWriter(log_dir)
enabling -

logging summary_writer.add_scalar(tag, scalar_value, global_step)
flushing summary_writer.flush()
closing summary_writer.close()

Requires explicit installation of the tensorboard package.

For faster loading, use summary_writer.add_scalar([...], new_style=True) .

Member of the Helmholtz Association 2024-11-05 Slide 20

https://pytorch.org/docs/stable/tensorboard.html#torch.utils.tensorboard.writer.SummaryWriter
https://pytorch.org/docs/stable/tensorboard.html#torch.utils.tensorboard.writer.SummaryWriter.add_scalar
https://pytorch.org/docs/stable/tensorboard.html#torch.utils.tensorboard.writer.SummaryWriter.flush
https://pytorch.org/docs/stable/tensorboard.html#torch.utils.tensorboard.writer.SummaryWriter.close

TensorBoard in TensorFlow/JAX

TensorFlow/JAX

API tf.summary.create_file_writer(logdir)
enabling with summary_writer.as_default():
logging tf.summary.scalar(tag, value, step)
flushing summary_writer.flush()
closing summary_writer.close()

JAX requires explicit installation of the tensorboard package.

Member of the Helmholtz Association 2024-11-05 Slide 21

https://www.tensorflow.org/api_docs/python/tf/summary/create_file_writer
https://www.tensorflow.org/api_docs/python/tf/summary/SummaryWriter#as_default
https://www.tensorflow.org/api_docs/python/tf/summary/scalar
https://www.tensorflow.org/api_docs/python/tf/summary/SummaryWriter#flush
https://www.tensorflow.org/api_docs/python/tf/summary/SummaryWriter#close

Logging I/O improvements

Logging frameworks usually keep a buffer that they write to before committing the logged values

to a file.

PyTorch:

SummaryWriter([...], max_queue=10, flush_secs=120)
TensorFlow/JAX:

create_file_writer([...], max_queue=10, flush_millis=120_000)

Member of the Helmholtz Association 2024-11-05 Slide 22

Part V: Hands-on exercise tomorrow

Member of the Helmholtz Association

Hands-on exercise tomorrow

You’re given a naive, distributed Vision Transformer training loop on fake image data; your goal is

to use your newfound knowledge to make it as fast as possible!

Member of the Helmholtz Association 2024-11-05 Slide 23

Part VI: Exercises

Member of the Helmholtz Association

Setting up

1 Log into the supercomputer JUSUF (ssh <user>@jusuf.fz-juelich.de).

2 cd /p/project1/training2403/ParIO_course_material/exercises/Python_ML_DL

3 nice bash set_up.sh and wait until done. In the meantime, feel free to look into

exercise 1.1 in the same directory!

4 Every time you (re-)connect to the machine and want to do the Python ML/DL exercises,

execute the following to activate the software environment:

cd /p/project1/training2403/ParIO_course_material/exercises/Python_ML_DL

source activate.sh

5 Exercises should be executed like sbatch <file>.sbatch [args...] .

Member of the Helmholtz Association 2024-11-05 Slide 24

Exercise 2.1

We took a look at how data loaders can be optimized. Let’s combine this with our findings from

exercise 1.1 to put data loading optimizations into practice! The code actually loads the data into

GPUs in a distributed fashion and simulates a model training (using time.sleep), so make sure

that GPU transfer is optimized.

There are a few new arguments compared to exercise 1.1, mostly concerning the data loader.

Please use python 2.1_data_loading.py --help to get a list of all arguments. See also the

data loader overview table.

You can also let the code run on more than the default 2 nodes.

Member of the Helmholtz Association 2024-11-05 Slide 25

Exercise 2.2

The script for this exercise saves checkpoints. We already implemented naive, distributed, and

asynchronous checkpointing. However, the asynchronous implementation suffers from race

conditions. Important arguments: --save-root , --dist-cp , --dist-single ,

--async-cp .

1 Compare the script’s runtime when using the various arguments.

2 Fix the asynchronous checkpointing race conditions and compare its runtime.

If you don’t encounter race conditions with asynchronous checkpointing before fixing them, or if

you don’t have enough memory available, increase or decrease hidden_dim in the

build_model function by a factor of a power of two.

You can also let the code run on more than the default 2 nodes.

Member of the Helmholtz Association 2024-11-05 Slide 26

	Outline
	Data loading pipelines
	Checkpointing
	Logging
	Hands-on exercise tomorrow
	Exercises

