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Topics and target audience (1/2)

First session:

1 random access patterns, memory-mapped files ( mmap )

2 very large data

3 virtual file systems

Second session:

1 general data loading optimizations, host-to-device transfers

2 efficiently saving program state

3 metric logging
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Topics and target audience (2/2)

We will be using PyTorch, a scientific computing library. “NumPy on the GPU, with automatic

differentiation.” (NumPy is Python’s de facto multi-dimensional array standard library.)

TensorFlow and JAX APIs will also be addressed, concepts transfer.

Parallel writing of datasets is not part of these sessions!
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Parallel I/O in Machine Learning

Many algorithms used in machine learning (ML)… We will focus on gradient descent:

1 Shuffle dataset.

2 Model trains iteratively on distinct subsets of the full dataset (“mini-batches”).

3 When dataset is exhausted, go to step 1.

Gradient descent really likes to have differently shuffled iid. data each training epoch.
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Data in Machine Learning

Data used in ML/deep learning (DL) comes in all kinds of shapes and forms. Images, text

documents, spectra, graphs, …

Data points in a single dataset may be:

structured and same length. Example: same-format images

structured and different lengths. Example: genomic data

(unstructured and same length)

unstructured and different lengths. Example: composition of differently structured datasets
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Desiderata

What do we need from a good, (general-purpose) ML data format?

Fast random access

Ease of use

Parallel writing

(Good performance with and support for variable-length data)

Portability
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Data formats

FL = fixed-length

VL = variable-length

Directory HDF5 Arrow Parquet Custom binary

Fast FL random access ? Y Y Y Y
Fast VL random access ? N Y Y Y
FL usability Y Y Y- Y- ?
VL usability Y Y- Y Y ?
FL parallel writing Y Y Y- Y- Y
VL parallel writing Y N Y- Y- ?
Single file N Y ? ? Y
Has specification N Y Y Y N

On JUST, files don’t scale well, but have become much more lenient than in the past.

Arrow and Parquet don’t support parallel writing to a single file.
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Interlude: Memory-mapped files

Usually: each read/write requires a read / write system call.

mmap : one system call to associate RAM section with disk memory.

Mapped sections always align to page size. They page disk memory blocks in/out as required.

→ Small files will still take a lot of space due to alignment.

→ Reduce system calls, instead just change out memory.

Single-node: safely share memory between different processes.

Multi-node: care required to prevent race conditions if writing.

Different from memory-mapped I/O.
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Libraries and data loaders

PyTorch: torch.utils.data.DataLoader

TensorFlow/JAX: tf.data

Worth mentioning: HuggingFace datasets as cross-framework abstraction.
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https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://www.tensorflow.org/api_docs/python/tf/data
https://huggingface.co/docs/datasets/index


How they work

Data loaders are lazy. Things only happen when they need to, in the last moment possible. How

they work also depends on the type of dataset used.

In PyTorch:

torch.utils.data.Dataset : “map-style”, indexable ( __getitem__ ),

has a length ( __len__ )

torch.utils.data.IterableDataset : “iterable-style”, iterable ( __iter__ ),

length optional (could be unknown or∞!)

In TensorFlow: always “iterable-style” with optional length.

Per-element processing only occurs when we actually index/iterate to a sample.
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https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__len__
https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset
https://docs.python.org/3/reference/datamodel.html#object.__iter__


Multiprocessing and Pickle

In PyTorch, if num_workers > 0 : upon iterating the dataloader, subprocesses are started.

Can cause issues with dataset’s attributes and…

Pickle protocol. E.g., in old versions of NumPy, arrays read from memory-mapped files are

pickle d as in-memory arrays.

However: situation has gotten much better than in the past.

Python objects and reference counting.

Recommendation: do not keep files open after __init__ , only do it in __getitem__ /

__iter__ because by then the subprocesses have been started.

Always be aware of this! Memory will be replicated if not shared properly.
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https://docs.python.org/3/library/pickle.html#object.__getstate__
https://github.com/pytorch/pytorch/issues/13246#issuecomment-905703662
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Data sharding APIs

Map-style: each process gets its shard’s indices.

Iterable-style:

PyTorch: manually implemented by user; simplest solution: iterate full dataset, but discard

superfluous data (i.e., other shards).

TensorFlow: each process iterates full dataset, but discards superfluous data (i.e., other

shards).
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Part IV: One-pot solutions
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One-pot solutions

Let’s say

we have an existing dataset with tons of files,

an existing code base,

we are on a file system with very slow metadata queries, and

we are really lazy.

All of the following, including templates, also documented at:

https://sdlaml.pages.jsc.fz-juelich.de/ai/guides/handling_large_datasets/

Similar guides:

https://go.fzj.de/ai-jsc
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One-pot solution for in-memory data

We can avoid I/O concerns and be really fast if our data fits into RAM.

One-pot solution:

1 tar the dataset.

2 untar the dataset into /dev/shm .

3 Read data from /dev/shm .

/dev/shm is an interface to shared memory in Linux. Optional kernel feature, so availability

depends.
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One-pot solution for on-disk data

Data doesn’t fit in RAM? Set up a filesystem in userspace (FUSE)!

Cheat solution:

1 Archive data into a format with FUSE support (e.g., SquashFS).

2 Mount the data into a virtual filesystem with FUSE.

3 Set up an exit handler that unmounts the FUSE.

4 Read data from mount point.

Lots of variance in library performance, especially concerning parallel access.

On our systems: SquashFS usually already installed (currently missing due to a recent update), so

usually requires no additional setup; okay performance. Mount has to be in /dev/shm or /tmp .
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https://en.wikipedia.org/wiki/Filesystem_in_Userspace


Part V: Exercises
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Setting up

1 Log into the supercomputer JUSUF ( ssh <user>@jusuf.fz-juelich.de ).

2 cd /p/project1/training2403/ParIO_course_material/exercises/Python_ML_DL

3 nice bash set_up.sh and wait until done. In the meantime, feel free to look into

exercise 1.1 in the same directory!

4 Every time you (re-)connect to the machine and want to do the Python ML/DL exercises,

execute the following to activate the software environment:

cd /p/project1/training2403/ParIO_course_material/exercises/Python_ML_DL

source activate.sh

5 Exercises should be executed like sbatch <file>.sbatch [args...] .
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Exercise 1.1

We introduced a bunch of data formats. Now it’s on you to benchmark a toy example! Important

arguments: --data-root , --format , --num-samples .

1 How does memory mapping affect performance? ( --use-mmap )

2 How does assuming fixed-length data affect performance? ( --fixed-length )

3 How does shuffling affect performance? ( --shuffle )

4 How does parallel reading affect performance? ( --num-workers )

5 Explore other parameters if you feel like it!

The dataset contains fake image data and labels. All data formats use the same serialized NumPy

array storage.
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Exercise 1.2

You’re given a dataset containing numbers like “01”, “02”, …

1 Use the PyTorch API to shard a map-style dataset.

2 Manually modify the implementation to shard an iterable-style dataset.

Data should be sharded so that each process gets one element in turn, starting with process 0.

By default, tests will be executed for sharding with 4 processes. Feel free to change this; you can

also let the code run multi-node.

Hints:

1 torch.utils.data.DistributedSampler (by default, shuffle=True )

2 itertools.islice
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Exercise 1.3 (bonus)

Let’s use the /dev/shm one-pot solution to iterate our data quickly in-memory and without

much extra work.

A basic Python code skeleton based on the “directory” format from exercise 1.1 exists. By default

the code reads from the global file system. Your task is to add the taring and untaring so we read

from /dev/shm instead, requiring no code changes other than returning a different path..

Hints:

1 tarfile is a helpful package for working with tar files in Python’s standard library.

2 shutil has some file operation utilities (you may not need this).

3 Once the basics are done, you may want to make your (very sensitive) data in /dev/shm
private, so that future users won’t be able to read it.
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