
PARALLEL I/O AND PORTABLE DATA FORMATS
PERFORMANCE ANALYSES
06.11.2024 I ARAVIND SANKARAN (A.SANKARAN@FZ-JUELICH.DE)

2

Agenda

• Understanding the touch points for I/O performance analysis.

• Learning to use the following tools for monitoring I/O accesses:
• STrace
• Darshan
• LLview

• Apply the tools to analyze the following I/O access patterns:
• Independent I/O to independent files.
• Independent I/O to a shared file.
• Collective I/O to a shared file.

3

Make a copy of the exercise folder your project directory:
/p/project1/training2403/ParIO_course_material/exercises/Perf_Analysis

Time for Action

4

Time for Action: Spawn a Remote Instance of Jupyter Lab

• OPTION 1: Use Jupyter-JSC (https://jupyter.jsc.fz-juelich.de/hub/home)

https://jupyter.jsc.fz-juelich.de/hub/home

5

[local] ssh -L 8889:localhost:8889 -i [PATH_TO_KEY] [USERNAME]@jusuf.fz-juelich.de

[jusuf] cd /p/project1/training2403/[USERNAME]

[jusuf] module load Jupyter-bundle

[jusuf] jupyter lab --no-browser --port=8889

An arbitrary port number

• OPTION 2: Spawn the instance manually

Time for Action: Spawn a Remote Instance of Jupyter Lab

6

Copy this link and paste it in the browser of your local machine

Time for Action: Spawn a Remote Instance of Jupyter Lab

• OPTION 2: Spawn the instance manually

7

Time for Action: Spawn a Remote Instance of Jupyter Lab

8

Quiz

In C, what are the main difference between the following two sets of function calls?

• open(..), read(..), write(..)
• fopen(…), fread(…), fwrite(…)

10

strace [COMMAND]

Example:

Basic Usage:

Tracing System Calls with STrace

11

strace –e read [COMMAND]

Example:

Basic Usage (Show only read calls):

Tracing System Calls with STrace

12

System Call Details

13

strace –y –e read [COMMAND]

Example:

Basic Usage (Show only read calls with file paths instead of file descriptors):

Tracing System Calls with STrace

14

System Calls

POSIX calls
e.g, read, write from unistd.h

Application Software
e.g., fread, fwrite from stdio.h

Resources

System Calls

Why should I use fread, fwrite, when I can
directly use read, write from unistd.h?

15

I/O Workflow

e.g., read()

16

Process 1

Process Buffer

Process 2

Process Buffer

Open File Table

Process 1
File Descriptor Table

Driver

Process 2
File Descriptor Table

I/O Workflow

Virtual Memory

read()

17

Virtual Memory
User

Memory

Kernel
Memory

Process 1

Process Buffer

Process 2

Process Buffer

File Tables
Open File Table
i-node Table

System Call: read
Process 1
Kernel Buffers
File Descriptor Table

Driver

Process 2
Kernel Buffers
File Descriptor Table

Storage

Read Workflow (OS View)

System call return

Data
Available?

Yes

No

18

Virtual Memory
User

Memory

Kernel
Memory

Process 1

Process Buffer

Process 2

Process Buffer

File Tables
Open File Table
i-node Table

System Call: write
Process 1
Kernel Buffers
File Descriptor Table

Driver

Process 2
Kernel Buffers
File Descriptor Table

Write Workflow (OS View)

System call return

19

Process 1

Process Buffer

Process 2

Process Buffer

Open File Table

Process 1
File Descriptor Table

Driver

Process 2
File Descriptor Table

File Descriptor Table:

• Each Process has its own File descriptor table.

Some useful commands:

• ls –l /proc/<PID>/fd
• Lists all the files opened by the process.

• cat /proc/<PID>/fdinfo/<FD>
• Details of a particular file descriptor.

File Descriptor Table

20

Process 1

Process Buffer

Process 2

Process Buffer

Open File Table

Process 1
File Descriptor Table

Driver

Process 2
File Descriptor Table

Open File Table:

• List of all open files in the system.
• Instead of File descriptor, points to the inode.

Some useful commands

• lsof
• Lists all open files

Open File Table

21

File Descriptor table has pointer to the Open File Table (system wide), which in turn has pointer to the i-node
table, which has the data.

Relationship between the Tables

22

Process 1

Process Buffer

Process 2

Process Buffer

Open File Table

Process 1
File Descriptor Table

Driver

Process 2
File Descriptor Table

I/O Workflow

Fig ref: Kerrisk, Michael. The Linux programming interface: a Linux and UNIX system programming handbook. No Starch
Press, 2010

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

Independent I/O to Independent File

Warm Up:

• Consider a two dimensional array with Integer
values 1 up to 200.

We will analyze the following interfaces:

• UNISTD (e.g., read, write)
• STDIO (e.g., fread, fwrite)

23

Follow the notebook:
02_II_posix_stdio.ipynb (Task 1)

Independent I/O to Independent File

24

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

The Touch Points for I/O Performance Analyses
POSIX calls and Storage Access

• To perform I/O, a user application should eventually
issue requests to the OS. These requests are called
system calls, and they typically conform to POSIX
standard.

• The OS performs read/write operations to a copy of
the file in the memory (i.e., in the page table) and
returns.

• The return of the system calls are significantly high if
storage accesses are involved.

• read: The storage access is done if the data is
not in the page table.

• write: The storage access is done
asynchronously (except when explicitly
synchronized).

25

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

The Touch Points for I/O Performance Analyses

26

Optimization of I/O

• User applications should minimize the number of
POSIX calls with small access size.

• Modern OS internally minimizes the number of
storage accesses by optimally repacking one or
more POSIX calls.

• Therefore, to optimize I/O, both POSIX calls and
storage access counts should be considered.

Monitoring of POSIX calls and storage accesses

• The user application typically cannot monitor beyond
the POSIX calls, and does not directly know whether
or not the storage access was done.

• For monitoring of storage accesses, site specific
tools can be used.

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

Strace,
Darshan

LLview

Tools for monitoring POSIX and GPFS accesses
What is covered in this session:

• Application level monitoring:

• STrace: Linux utility to traces the sequence of POSIX
calls. Simple to use, and provides the raw data that
can be used to infer application performance.

• Darshan: Utilizes the traces of POSIX calls and also
the calls from standard library (STDIO) and MPI-IO,
computes statistics and provide a high level overview
of application performance.

• There are more tools such as Score-P that are not
discussed in this session.

• System level monitoring:

• LLview: Provides an overview of GPFS accesses
for each SLRUM job in JSC systems.

27

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

Independent I/O to Independent File

Consider a two dimensional array with Integer
values 1 up to 200.

We will analyze the following interfaces:

• Python built-in I/O interfaces
• Python Pickle

28

Follow the notebook:
02_II_posix_stdio.ipynb (Task 2)

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

Independent I/O to Independent File

Consider a two dimensional array with Integer
values 1 up to 200.

We will analyze the following interfaces:

• HDF5 interfaces (both C and Python)

30

Follow the notebook:
03_II_h5.ipynb

Warm Up: Usage of HDF5 Interfaces

31

32

Warm Up: Usage of HDF5 Interfaces

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

strace -y -o trace.log ./main
cat trace.log | grep “matrix.h5"

Example command:

I/O Analyses with STrace

Usage:

• Prepend your command with strace to log the
sequence of system calls.

33

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

I/O Analyses with STrace

Revisiting the serial HDF5 program:

• Consider a two dimensional array with Integer
values 1 up to 200.

• This array is written into an empty HDF5
dataset using the C API.

34

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

strace -y -o trace.log ./main
cat trace.log | grep “matrix.h5"

pwrite64(.., BYTES_REQ, OFFSET) = BYTES_WRITTEN;
pwrite64(.., 96, 0) = 96
pwrite64(..,800, 2432) = 800
pwrite64(..,2432, 0) = 2432
pwrite64(..,96, 0) = 96

COMMAND:

OUTPUT:

I/O Analyses with STrace

35

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

Exercise

• Consider the writing of same matrix with
the Python API and analyze with STrace.
Identify and explain the differences in
data and meta data sizes.

• Follow the instructions in the notebook:
03_II_h5.ipynb (Task 4)

36

Exercise

37

Type: Int (4 bytes)
Data size: 10x20x4 = 800 bytes

strace -y -o trace.log python main.py
cat trace.log | grep “matrix_py.h5"

pwrite64(.., BYTES_REQ, OFFSET) = BYTES_WRITTEN;
pwrite64(.., 96, 0) = 96
pwrite64(..,1600, 6528) = 1600
pwrite64(..,4096, 2432) = 4096
pwrite64(..,2432, 0) = 2432
pwrite64(..,96, 0) = 96

COMMAND:

OUTPUT:

Questions:
1. Why is the data size 2x?
2. Why is the meta data size significantly high?

Exercise

38

39

COLUMNS=20

ROWS=8

P0

P1

P2

P3

matrix_0.bin

matrix_1.bin

matrix_2.bin

matrix_3.bin

Independent I/O to Independent File (Parallel)

Type: Int (4 bytes)
Data size: 8x20x4 = 640 bytes
Size per process = 2x20x4 = 160 bytes

40

COLUMNS=20

ROWS=8

P0

P1

P2

P3

matrix.bin

Independent I/O to a Shared File (STDIO)

Follow the notebook:
04_IS_posix_stdio.ipynb

Type: Int (4 bytes)
Data size: 8x20x4 = 640 bytes
Size per process = 2x20x4 = 160 bytes

41

Independent I/O to a Shared File (STDIO)

The main problem with STDIO in doing Parallel I/O:

• STDIO is not aware of which parts of a shared file other processes in the MPI communicator are trying
to accesses. Hence, it cannot optimize I/O by combining accesses from multiple processes.

Revisiting the Parallel HDF5 program:

• Consider a two dimensional array with Integer values, and the rows are split among
4 processes.

• Follow the notebook: 05_CS_h5_row_split.ipynb

Collective I/O to a Shared File (HDF5)

42

Collective I/O to a Shared File (HDF5)

43

Collective I/O to a Shared File (HDF5)

44

Collective I/O to a Shared File (HDF5)

45

#!/bin/bash
#SBATCH --job-name=phdf5_st
#SBATCH --output=log.out
#SBATCH --error=log.err
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --time=00:05:00
#SBATCH --partition=batch
#SBATCH --account=ACCOUNT

module purge
module load Stages/2024
module load GCC ParaStationMPI HDF5
module load strace

mpicc -o write_phdf5 write_phdf5.c -lhdf5
srun -n 4 --cpus-per-task=1 strace [OPTIONS] ./write_phdf5

Collective I/O to a Shared File (HDF5)

46

Type: Int (4 bytes)
Data size: 8x40x4 = 1280 bytes

Node/task Sys call POSIX size offset
Node 1 (t1) pwrite64 1280 2140
Node 1 (t1) pwrite64 96 0
Node 1 (t2) pwrite64 128 680
Node 2 (t3) pwrite64 328 1054
Node 2 (t4) pwrite64 272 1832
Node 2 (t4) pwrite64 328 4152
..

Data

MD

Collective I/O to a Shared File (HDF5)

47

Node/task Sys call POSIX size offset
Node 1 (t1) pwrite64 1280 2140
Node 1 (t1) pwrite64 96 0
Node 1 (t2) pwrite64 128 680
Node 2 (t3) pwrite64 328 1054
Node 2 (t4) pwrite64 272 1832
Node 2 (t4) pwrite64 328 4152
..

Data

MD

Collective I/O to a Shared File (HDF5)

48

Collective I/O to a Shared File (HDF5)

49

• Repeat the program with MPI IO independent accesses.

Independent I/O to a Shared File (HDF5)

50

Type: Int (4 bytes)
Data size: 8x40x4 = 1280 bytes
Num procs = 4
Independent data access size = 1280/4 = 320

Node/task Sys call POSIX size offset
Node 1 (t1) pwrite64 320 2104
Node 1 (t2) pwrite64 320 2424
Node 2 (t3) pwrite64 320 2744
Node 2 (t4) pwrite64 320 3064
Node 2 (t3) pwrite64 272 1832
Node 2 (t4) pwrite64 328 4152
..

Data

MD

Independent I/O to a Shared File (HDF5)

51

Independent I/O to a Shared File (HDF5)

52

Collective I/O observations:

• The data is gathered by one process, which then issues one POSIX call.

• Every process writes some meta data.

Writing to a Shared File (HDF5)

53

Independent I/O observations:

• Each process issues one POSIX call to write its portion of data.

• Every process writes some meta data.

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

Strace,
Darshan

LLview

MPI I/O
Collectives

Discussion

The I/O operations passing through the MPI-
IO collective interface may either translate to
a POSIX request or invoke an MPI
communication.

54

Discussion

• Collectives: I/O contentions are often realized when
scaled to large number of nodes.

• Independent: Scalable, but contentions are realized
when multiple processes try to access the same file
system block.

55

Discussion

• Collectives: I/O contentions are often realized when
scaled to large number of nodes.

• Independent: Scalable, but contentions are realized
when multiple processes try to access the same file
system block.

56

57

A node of JUWELS booster:

• 4 NIC cards (ConnectX-6); each with 200 Gbps or 25 GB/s link. Total: 25x4 = 100 GB/s.
• Can a single user process capitalize on all 4 NIC cards? Depends on the OS.

The Trade-offs (Indepedent vs Collective with a node)

58

The Trade-offs (Indepedent vs Collective with a node)

A node of JUWELS booster:

• 4 NIC cards (ConnectX-6); each with 200 Gbps or 25 GB/s link. Total: 25x4 = 100 GB/s.
• Can a single process capitalize on all 4 NIC cards? Depends on the OS.

Exercise (HDF5 Collective Column split)
• Instead of rows, now split the columns of the matrix among the processes and repeat the analyses with STrace. Identify

the differences.

• Follow the instructions in the notebooks: 07_h5_col_split.ipynb

59

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

Darshan

LLview

MPI I/O
Collectives

Tools in their Perspectives

STrace

60

61

Profiling with Darshan
• I/O profiling tool for parallel applications

• http://www.mcs.anl.gov/research/projects/darshan/
• Integration by using LD_PRELOAD:

• LD_PRELOAD=.../lib/libdarshan.so

• DARSHAN_LOG_PATH points to target log directory
• DXT_ENABLE_IO_TRACE=1 allows task specific tracing
• Analyse tools:

• darshan-parser: command line access
• darshan-dxt-parser: trace data access
• darshan-job-summary.pl: PDF reportMore details:

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html

Darshan

62

Darshan (Operation Counts)

Node/task Sys call POSIX size offset

Node 1 (t1) pwrite64 1280 2140

Node 1 (t1) pwrite64 96 0

Node 1 (t2) pwrite64 128 680

Node 2 (t3) pwrite64 328 1054

Node 2 (t4) pwrite64 272 1832

Node 2 (t4) pwrite64 328 4152

..

1x Data Op

11x MD Op

Question:

• How does the 12 POSIX calls translate to 11 MPI-IO
independent and 4 MPI-IO collective calls?

Row Split, MPI IO Collective

63

Darshan (Operation Counts)

Node/task Sys call POSIX size offset

Node 1 (t1) pwrite64 1280 2140

Node 1 (t1) pwrite64 96 0

Node 1 (t2) pwrite64 128 680

Node 2 (t3) pwrite64 328 1054

Node 2 (t4) pwrite64 272 1832

Node 2 (t4) pwrite64 328 4152

..

1x Data Op

11x MD Op

Observations:

• 12 POSIX calls in total.
• 11 POSIX calls for meta data writes 11 Independent MPI-IO

calls to a shared file.
• 1 POSIX call for data transfer after collective MPI-IO from

each process.

Row Split, MPI IO Collective

64

Node/task Sys call POSIX size offset

Node 1 (t1) pwrite64 320 2104

Node 1 (t2) pwrite64 320 2424

Node 2 (t3) pwrite64 320 2744

Node 2 (t4) pwrite64 320 3064

Node 2 (t3) pwrite64 272 1832

Node 2 (t4) pwrite64 328 4152

..

4x Data

11x MD

Row Split, MPI IO Independent
Darshan (Access Sizes)

One-to-One
correspondence b/w

POSIX and MPI-IO

65

Darshan (Access Sizes)

1280/4 = 320

Row Split, MPI IO Collective

66

Darshan
Collective

Independent

Note:

• The high overhead for independent access is not because of increased number of POSIX writes,
but due to file lock contentions resulting from multiple processes trying to update the same file
system block.

67

Darshan (Heat Map)

68

Darshan: Usage summary
• Load module

• module load darshan-runtime

• Tell srun to use Darshan (in submit script)
• LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \
DARSHAN_LOG_PATH=/path/to/your/logdir \
srun … ./executable

• Analyse output
• module load darshan-util

• darshan-job-summary.pl <logfile>.darshan

69

STrace Inspector

• Darshan considers only a set of files directly accessed by the application through
POSIX or high level library interfaces and aggregates the I/O operations related to
those files.

• However, the application accesses a lot more files and the system call traces hold
those information!

72

73

STrace Inspector
Challenge: How do you extract useful information from large amounts of information in the
system call traces?

74

Typical questions one could ask looking at the above data:

• What is the total read time spent on the directory /p/software?

• How much I/O time is spent on system activities, i.e., under /sys/?

STrace Inspector

75

read+/p/software

read+/p/software

read+/usr/lib64

STrace Inspector

Activity

Idea:

• Classify each row to a string that helps answer your question. We call this string “Activity”.
• Apply grouping based on activities and compute statistics.
• Identify dependency relations (e.g., directly-follows relation) between the activities.

76

read+/p/software

read+/p/software

read+/usr/lib64

STrace Inspector

Activity

Idea:

• Apply Process Mining techniques.
• Ref: W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process Mining Handbook,

DOI: https://doi.org/10.1007/978-3-031-08848-3_2

STrace Inspector
Consider Row split, MPI IO Collective

• I/O Operations represented as a Directly-Follows-Graph.
• Ref: https://arxiv.org/abs/2408.07378

77

STrace Inspector
Consider Row split, MPI IO Collective

• I/O Operations represented as a Directly-Follows-Graph.
• Ref: https://arxiv.org/abs/2408.07378

78

STrace Inspector
Consider Row split, MPI IO Collective

• The representation is hierarchical.
• E.g., expand the IOPs under /sys

79

STrace Inspector

Row split, MPI IO Collective

Row split, MPI IO Independent

80

81

P0.strace.log P1.strace.log P2.strace.log P3.strace.log

Activity
a
b
c

Activity
a
c
b

Activity
a
c
b

Activity
a
b
b

STrace Inspector: DFG Construction

82

Activity
a
b
b

Activity
a
b
c

Activity
a
c
b

Activity
a
c
b

STrace Inspector: DFG Construction

83

Activity
a
b
b

Activity
a
b
c

Activity
a
c
b

Activity
a
c
b

STrace Inspector: DFG Construction

84

Activity
a
b
b

Activity
a
b
c

Activity
a
c
b

Activity
a
c
b

STrace Inspector: DFG Construction

H5Dwrite
High level Interfaces

fwrite from stdio.h (or)
aio_write from aio.h

Standard Libraries

POSIX write (write,pwrite,etc.)

System calls

Operating System
Update Page tables

GPFS daemon
Storage access

User
Application

OS

Darshan

LLview

MPI I/O
Collectives

Tools in their Perspectives

STrace

85

Monitoring GPFS accesses with LLView

• Enable the view of File system I/O operations (FS all)

• The total GPFS read/write (in GiB) during the run time of the job are displayed.

86

Summary
Performance Analysis

Expectation
Reality

Image generated by OpenAI's DALL-E model

87

Summary

• LLView: To identify the stress due to file system
activities.

• Darshan: For aggregated statistics on
application I/O performance.

• STrace Inspector: For hierarchical analysis of
application IOPs.

88

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88

