
Portable I/O Data Format Tutorial
Date: 06.11.2024

Diffusion equation
You’ll be working with the provided code in:
/p/project1/training2403/ParIO course material/exercises/Tutorial/

The code solves the heat diffusion equation ∂tf = κ (∂xx + ∂yy) f in two dimensions.
Your task is to write the subroutines for creating checkpoint files, such that it enables
the simulation to be resumed at a later time point.

Checkpoint/restart file is a common strategy to allow simulations to run for an arbi-
trarily long time, often a workaround to the imposed hard time limit of continuous
computations on HPC systems. It is also crucial to avoid data losses due to unex-
pected crashes. This works by writing the computed data onto the file system as a
file, which can be read into memory at a later time in order to resume the simulation.
Checkpoint file is also vital to prevent data loss due to unexpected termination of
simulation.

The template for the 2D heat diffusion simulation code is provided in C & Fortran lan-
guage. The code itself is already MPI parallelized, and you can focus purely on struc-
turing the data on every MPI process to be written into a single file. The compiled
program runs on 4 (8) MPI processes. The dimension of the 2D grid is 1000 × 1000
points. Each process updates the temperature values of their own 125 (250) × 1000
grid extents, and their ranks are distributed following the diagram below.

3

2

1

0

The simulation of the provided code reaches convergence in approximately 3300 steps.
Correct implementation of the write/read subroutines should yield the converged re-
sults after similar total number of iterations are completed, regardless if you pause
(write simulation data output) and resume (read in the prior written results) the
simulation at an arbitrary iteration step.

Your specific task is to code up the writing subroutine, storing the temperature data of
every gridpoint of every MPI processes in a single file called checkpoint <steps>.[nc/h5]

at every 1000 steps. As the file extension suggests, you can choose either NetCDF
or HDF5 file format for your implementation. A template for hdf5 implementation
is provided. Then, code up the reading subroutine such that the generated files can
be read into memory, and resume the simulation from the specific chosen file. You
can check the correctness of your write/read subroutines by comparing the globally
averaged temperature at convergence.

1


