
18.03.2024-22.03.2024 Instructors: Alina Bazarova, Sebastian Starke. Technical issues: Alexandre Strube

Lecture 4. Deep learning architectures
Bayesian Statistical Learning

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final
evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning),
partially labelled (semi-supervised learning) etc.

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation
of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially
labelled (semi-supervised learning) etc.

The model:

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
supervised learning) etc.

The model:

Training: backpropagation, i.e. minimising the given loss function using gradient descent method ->
updating the weights of the model

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
supervised learning) etc.

The model:

Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating
the weights of the model

 /exactly what we did previously when minimising Kullback-Leibler divergence(maximising free energy), but the
model is way more complicated/

Neural Networks with dense layers

Each layer is essentially a linear
transformation

 input layer, next layer

 weight matrix, - bias

Classical network: all weights are single
values

z = Wx + b

x z

W b

Neural Networks with dense layers

Weight matrices and biases are in fact

distributions, which are being learned

by means of Variational Bayes and

then one can sample the outputs from them

Jupyter notebook bayesian_neural_networks_wine

W b

Variational Autoencoder
General autoencoder: unsupervised (no labels),

input features are projected onto a lower dimensional

hidden layer (bottleneck) via encoder, and then transformed

back to the original dimension using decoder.

The aim is to reconstruct the original input.

Variational Autoencoder
General autoencoder: unsupervised (no labels),

input features are projected onto a lower dimensional

hidden layer (bottleneck) via encoder, and then transformed

back to the original dimension using decoder.

The aim is to reconstruct the original input.

Variational autoencoder: instead of outputting single values onto the hidden layer it outputs a
probability distribution, thereby forcing the decoder not to take a deterministic values as input but
rather to sample from the provided distributions

Variational autoencoder

, where (good old reparametrisation trick), hence and
 are deterministic layers

, where

Very similar set-up to stochastic variational Bayes! Jupyter notebook var_mod

z = zμ + zσε ε ∼ N(0,1) zμ
zσ

Loss = reconstruction loss + KL(q(z |X) | |p(z)) p(z) ∼ N(0,1)

Normalising flows
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space

- For that has to be the same shape as

- Given a prior probability density (e.g. normally distributed) and resulting distribution and
bijective

z

z X

pz(z) px(x)
f

Normalising flows
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space

- For that has to be the same shape as

- Given a prior probability density (e.g. normally distributed) and resulting distribution
and bijective

z

z X

pz(z) px(x)
f

∫ pz(z)dz = ∫ px(x)dx = 1

Normalising flows
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space

- For that has to be the same shape as

- Given a prior probability density (e.g. normally distributed) and resulting distribution
and bijective

, , hence

z

z X

pz(z) px(x)
f

∫ pz(z)dz = ∫ px(x)dx = 1 px(x) = pz(z) |
dz
dx

| = pz(f(x)) |
df(x)
dx

|

Normalising flows
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space

- For that has to be the same shape as

- Given a prior probability density (e.g. normally distributed) and resulting distribution and bijective

, , hence

z

z X

pz(z) px(x) f

∫ pz(z)dz = ∫ px(x)dx = 1 px(x) = pz(z) |
dz
dx

| = pz(f(x)) |
df(x)
dx

|

log px(x) = log pz(z) + log det (df(x)
dx)

Normalising flows
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space

- For that has to be the same shape as

- Given a prior probability density (e.g. normally distributed) and resulting distribution and bijective

, , hence

Visually: Jupyter notebook flows

z

z X

pz(z) px(x) f

∫ pz(z)dz = ∫ px(x)dx = 1 px(x) = pz(z) |
dz
dx

| = pz(f(x)) |
df(x)
dx

|

log px(x) = log pz(z) + log det (df(x)
dx)

