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Lecture 4. Deep learning architectures
Bayesian Statistical Learning



Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final 
evaluation of the model)


Data can be labelled (supervised learning), unlabelled (unsupervised learning), 
partially labelled (semi-supervised learning) etc.
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Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)


Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
supervised learning) etc.


The model:                                                      


Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating 
the weights of the model


 /exactly what we did previously when minimising Kullback-Leibler divergence(maximising free energy), but the 
model is way more complicated/



Neural Networks with dense layers

Each layer is essentially a linear 
transformation 


 input layer,  next layer


 weight matrix,  - bias


Classical network: all weights are single 
values

z = Wx + b

x z

W b



Neural Networks with dense layers

Weight matrices  and biases  are in fact 


distributions, which are being learned


by means of Variational Bayes and  

then one can sample the outputs from them


Jupyter notebook  bayesian_neural_networks_wine

W b



Variational Autoencoder
General autoencoder: unsupervised (no labels),


input features are projected onto a lower dimensional 


hidden layer (bottleneck) via encoder, and then transformed 


back to the original dimension using decoder. 


The aim is to reconstruct the original input. 



Variational Autoencoder
General autoencoder: unsupervised (no labels),


input features are projected onto a lower dimensional 


hidden layer (bottleneck) via encoder, and then transformed 


back to the original dimension using decoder. 


The aim is to reconstruct the original input. 

Variational autoencoder: instead of outputting single values onto the hidden layer it outputs a 
probability distribution, thereby forcing the decoder not to take a deterministic values as input but 
rather to sample from the provided distributions 




Variational autoencoder

, where  (good old reparametrisation trick), hence  and 
 are deterministic layers


, where 


Very similar set-up to stochastic variational Bayes! Jupyter notebook var_mod

z = zμ + zσε ε ∼ N(0,1) zμ
zσ

Loss = reconstruction loss + KL(q(z |X) | |p(z)) p(z) ∼ N(0,1)



Normalising flows
The major difference compared to VAE:


- Uses invertible functions to map onto the


latent space 


- For that  has to be the same shape as 


- Given a prior probability density  (e.g. normally distributed) and resulting distribution  and 
bijective 
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Visually:                             Jupyter notebook flows
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