Bayesian Statistical Learning

18.03.2024-22.03.2024 Instructors: Alina Bazarova, Sebastian Starke. Technical issues: Alexandre Strube

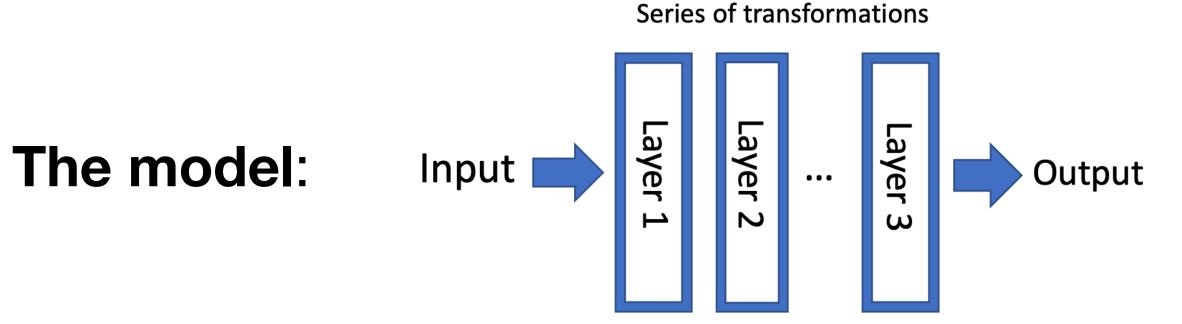
Lecture 4. Deep learning architectures

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-supervised learning) etc.

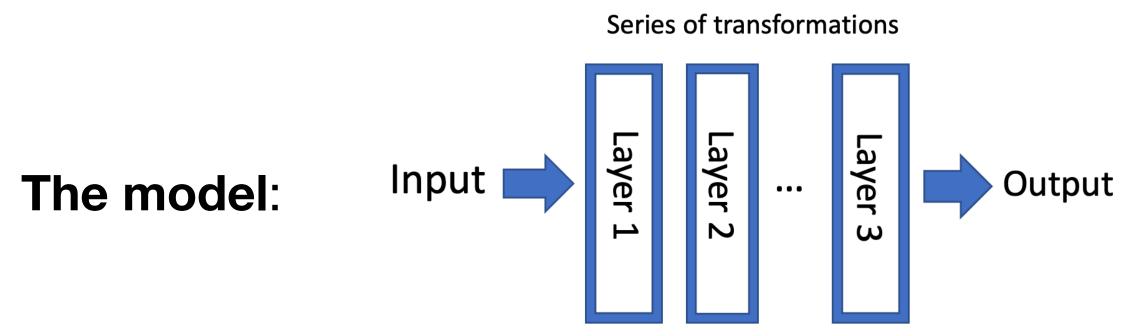
Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-supervised learning) etc.



Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

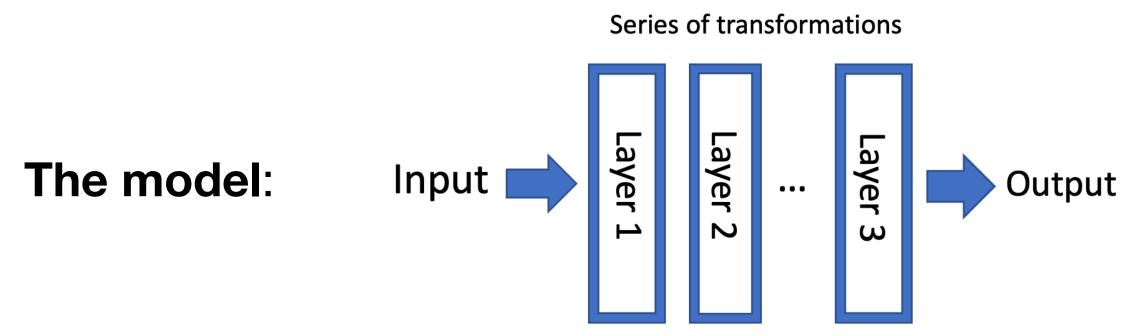
Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semisupervised learning) etc.



Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating the weights of the model

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semisupervised learning) etc.

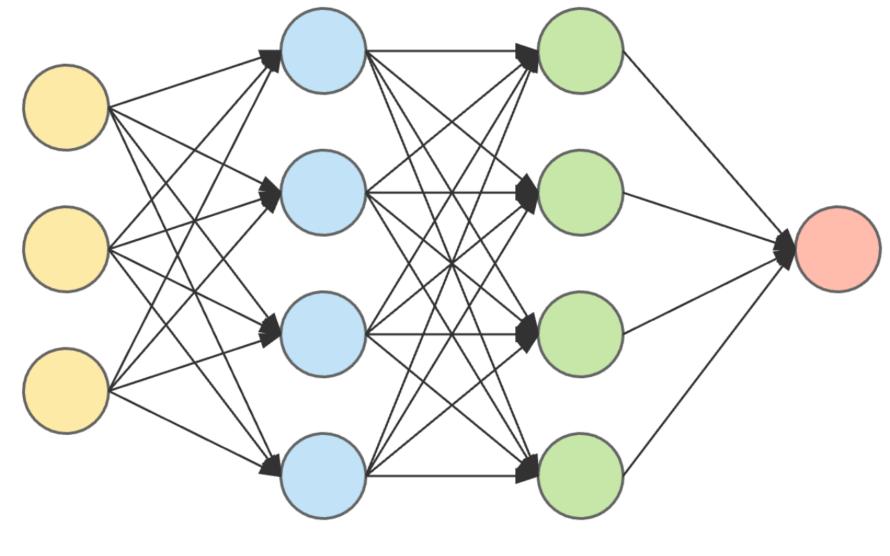


Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating the weights of the model

/exactly what we did previously when minimising Kullback-Leibler divergence(maximising free energy), but the model is way more complicated/

Neural Networks with dense layers

- Each layer is essentially a linear transformation z = Wx + b
- x input layer, z next layer
- W weight matrix, b bias
- Classical network: all weights are single values

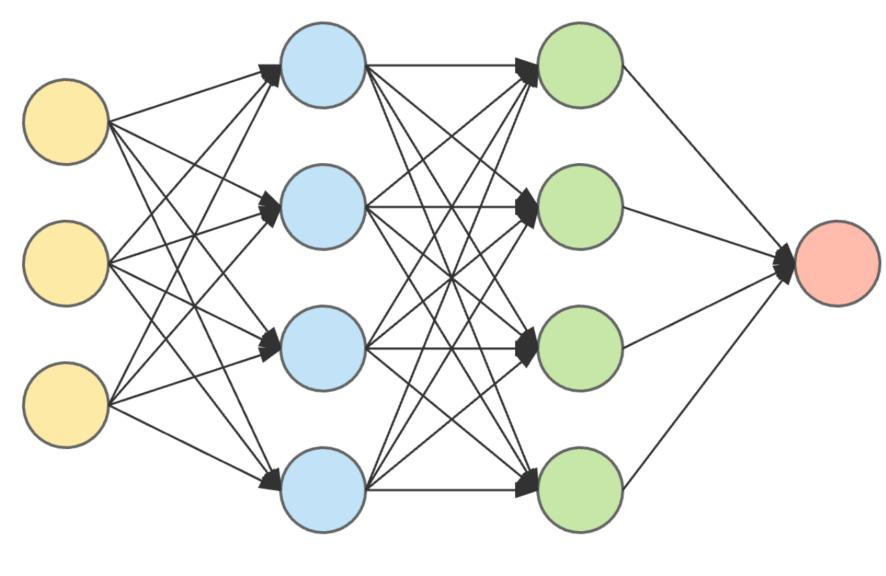


input layer hidden layer 1 hidden layer 2 output layer

Neural Networks with dense layers

Weight matrices *W* and biases *b* are in fact **distributions,** which are being learned by means of Variational Bayes and then one can **sample the outputs** from them

Jupyter notebook bayesian_neural_networks_wine



input layer hidden layer 1 hidden layer 2 ou

output layer

Variational Autoencoder

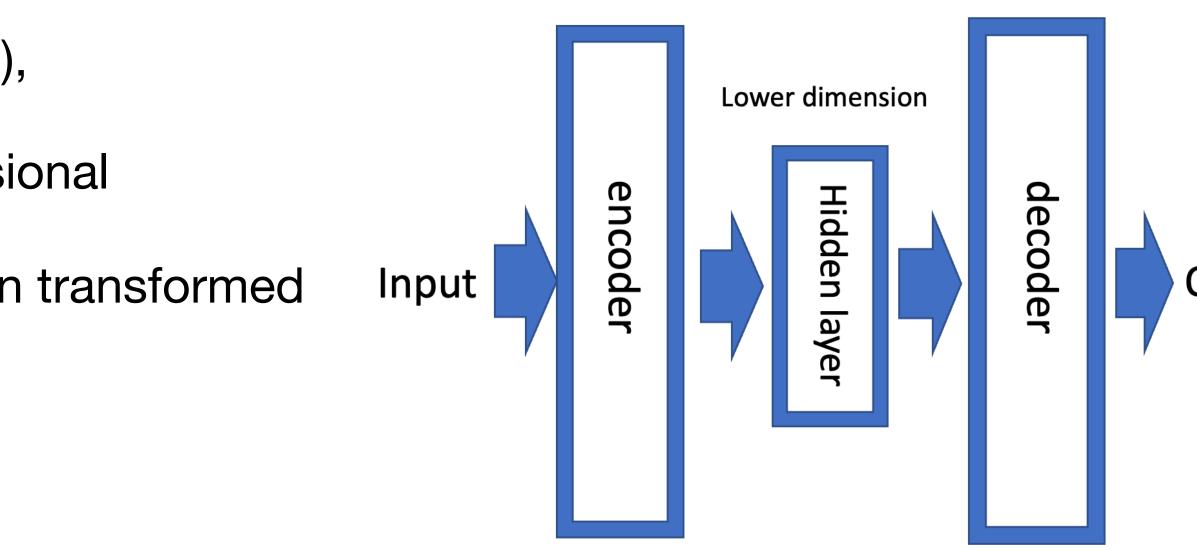
General autoencoder: unsupervised (no labels),

input features are projected onto a lower dimensional

hidden layer (bottleneck) via encoder, and then transformed

back to the original dimension using decoder.

The aim is to reconstruct the original input.



Output

Variational Autoencoder

General autoencoder: unsupervised (no labels),

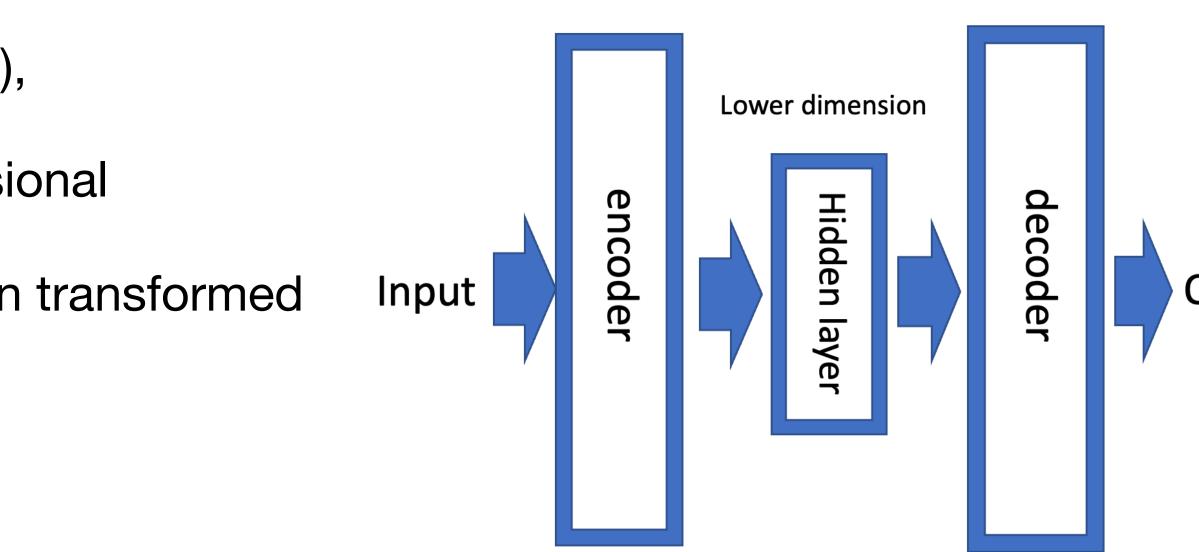
input features are projected onto a lower dimensional

hidden layer (bottleneck) via **encoder**, and then transformed

back to the original dimension using **decoder**.

The aim is to reconstruct the original input.

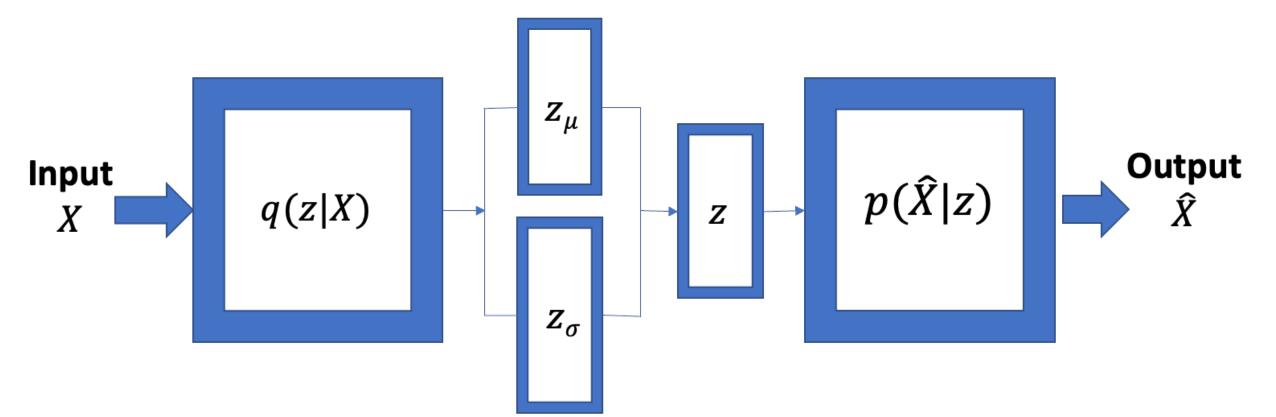
Variational autoencoder: instead of outputting single values onto the hidden layer it outputs a rather to sample from the provided distributions



probability distribution, thereby forcing the decoder not to take a deterministic values as input but

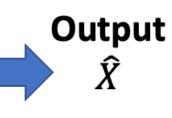
Output

Variational autoencoder



 z_{σ} are deterministic layers

Loss = reconstruction loss + KL(q(z|X)||p(z)), where $p(z) \sim N(0,1)$



$z = z_{\mu} + z_{\sigma} \varepsilon$, where $\varepsilon \sim N(0,1)$ (good old reparametrisation trick), hence z_{μ} and

- Very similar set-up to stochastic variational Bayes! Jupyter notebook var_mod

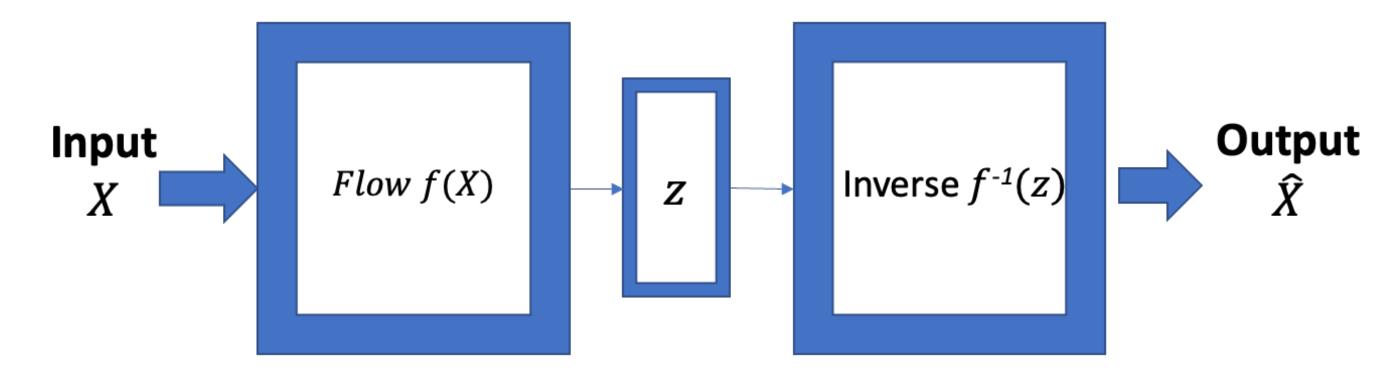
The major difference compared to VAE:

- Uses **invertible** functions to map onto the

latent space z

- For that z has to be the same shape as X

bijective f



- Given a prior probability density $p_z(z)$ (e.g. normally distributed) and resulting distribution $p_x(x)$ and

The major difference compared to VAE:

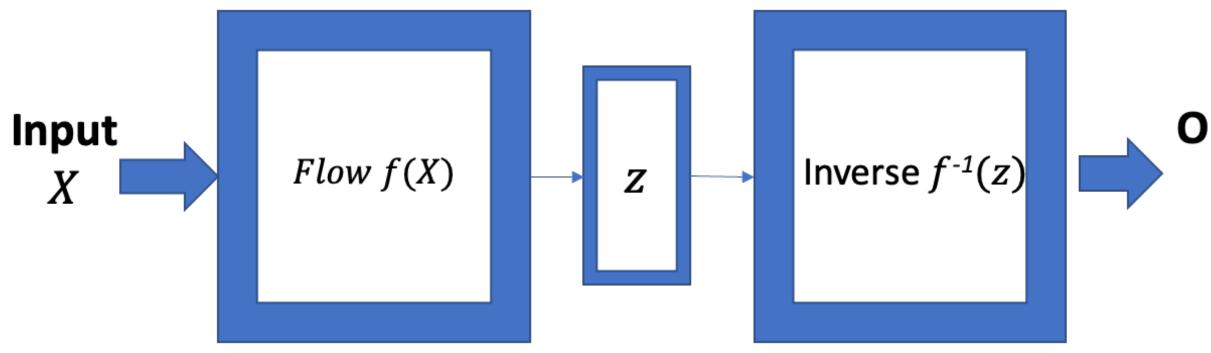
- Uses invertible functions to map onto the

latent space z

- For that \boldsymbol{z} has to be the same shape as \boldsymbol{X}

- Given a prior probability density $p_z(z)$ (e.g. r and bijective f

$$\int p_z(z)dz = \int p_x(x)dx = 1$$



- Given a prior probability density $p_z(z)$ (e.g. normally distributed) and resulting distribution $p_x(x)$

The major difference compared to VAE:

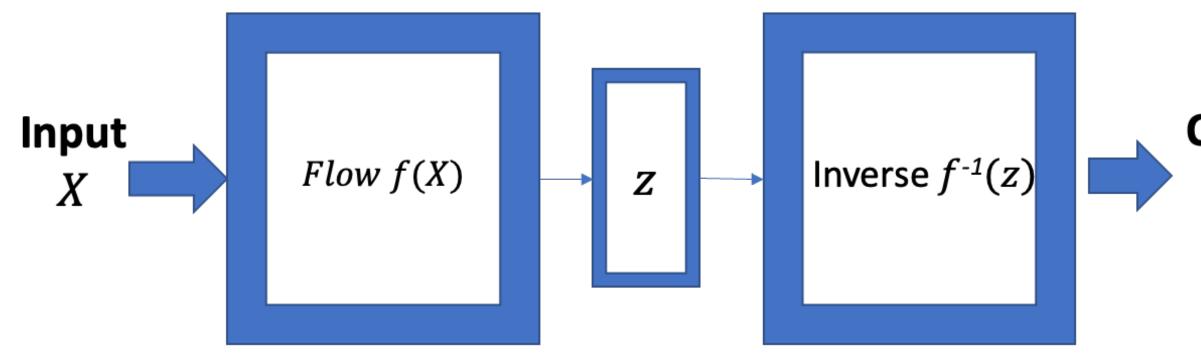
- Uses invertible functions to map onto the

latent space z

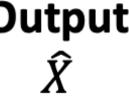
- For that \boldsymbol{z} has to be the same shape as \boldsymbol{X}

- Given a prior probability density $p_{\rm Z}(z)$ (e.g. r and bijective f

$$\int p_{z}(z)dz = \int p_{x}(x)dx = 1, p_{x}(x) = p_{z}(z) \left| \frac{dz}{dx} \right| = p_{z}(f(x)) \left| \frac{df(x)}{dx} \right|, \text{ hence}$$



- Given a prior probability density $p_z(z)$ (e.g. normally distributed) and resulting distribution $p_x(x)$

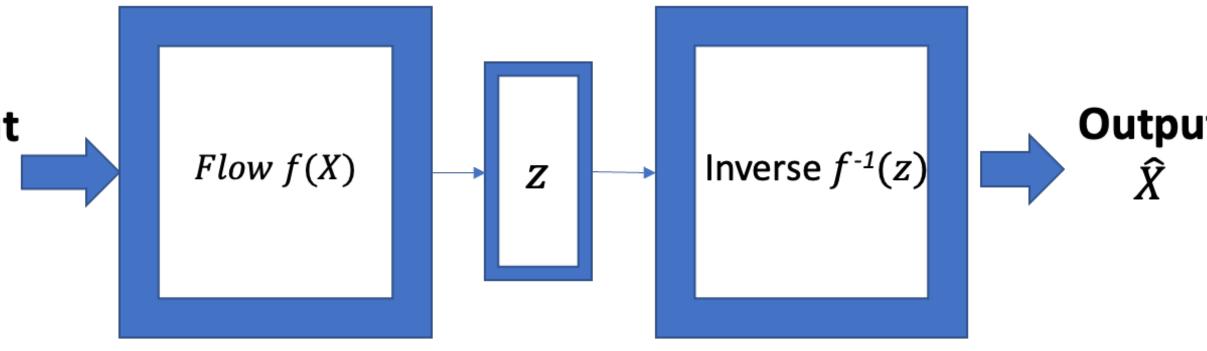


The major difference compared to VAE:

- Uses invertible functions to map onto the Input X latent space z
- For that z has to be the same shape as X

$$\int p_{z}(z)dz = \int p_{x}(x)dx = 1, p_{x}(x) = p_{z}(z) \left| \frac{dz}{dx} \right| = p_{z}(f(x)) \left| \frac{df(x)}{dx} \right|, \text{ hence}$$

$$\log p_x(\mathbf{x}) = \log p_z(\mathbf{z}) + \log \det \left(\frac{df(\mathbf{x})}{d\mathbf{x}}\right)$$



- Given a prior probability density $p_z(z)$ (e.g. normally distributed) and resulting distribution $p_x(x)$ and bijective f

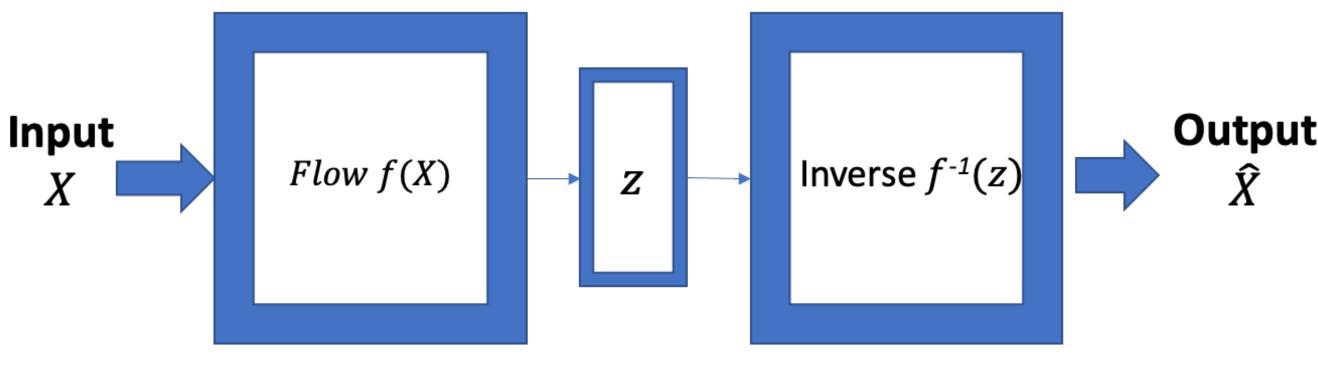
The major difference compared to VAE:

- Uses invertible functions to map onto the

latent space z

Visually:

- For that z has to be the same shape as X
- Given a prior probability density $p_z(z)$ (e.g. normally distributed) and resulting distribution $p_x(x)$ and bijective f



ence

Jupyter notebook flows

