
INTRODUCTION TO PARALLEL PROGRAMMING
WITHMPI AND OPENMP
August 12-16 2024 Junxian Chew, Michael Knobloch, Ilya Zhukov, Jolanta Zjupa Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: First Steps with OpenMP

Member of the Helmholtz Association

WHAT IS OPENMP?
OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can
be used to specify high-level parallelism in Fortran and C/C++ programs. (OpenMP FAQ1)

Initially targeted SMP systems, now also DSPs, accelerators, etc.
Provides specifications (not implementations)
Portable across different platforms

Current version of the specification: 5.2 (November 2021)

1Matthijs van Waveren et al. OpenMP FAQ. Version 3.0. June 6, 2018. URL: https://www.openmp.org/about/openmp-faq/ (visited on
01/30/2019).

Member of the Helmholtz Association August 12-16 2024 Slide 1

https://www.openmp.org/about/openmp-faq/

BRIEF HISTORY
1997 FORTRAN version 1.0
1998 C/C++ version 1.0
1999 FORTRAN version 1.1
2000 FORTRAN version 2.0
2002 C/C++ version 2.0
2005 First combined version 2.5, memory model,

internal control variables, clarifications
2008 Version 3.0, tasks
2011 Version 3.1, extended task facilities

2013 Version 4.0, thread affinity, SIMD, devices, tasks
(dependencies, groups, and cancellation),
improved Fortran 2003 compatibility

2015 Version 4.5, extended SIMD and devices facilities,
task priorities

2018 Version 5.0, memory model, base language
compatibility, allocators, extended task and
devices facilities

2020 Version 5.1, support for newer base languages,
loop transformations, compare-and-swap,
extended devices facilities

2021 Version 5.2, reorganization of the specification
and improved consistency

Member of the Helmholtz Association August 12-16 2024 Slide 2

COVERAGE
Overview of the OpenMP API
Internal Control Variables
Directive and Construct Syntax
Base Language Formats and Restrictions
Data Environment
Memory Management
Variant Directives
Informational and Utility Directives
Loop Transformation Constructs
Parallelism Generation and Control
Work-Distribution Constructs

Tasking Constructs
Device Directives and Clauses
Interoperability
Synchronization Constructs and Clauses
Cancellation Constructs
Composition of Contstructs
Runtime Library Routines
OMPT Interface
OMPD Interface
Environment Variables

COVERAGE
Overview of the OpenMP API (✓)
Internal Control Variables (✓)
Directive and Construct Syntax (✓)
Base Language Formats and Restrictions (✓)
Data Environment (✓)
Memory Management
Variant Directives
Informational and Utility Directives
Loop Transformation Constructs
Parallelism Generation and Control (✓)
Work-Distribution Constructs (✓)

Tasking Constructs (✓)
Device Directives and Clauses
Interoperability
Synchronization Constructs and Clauses (✓)
Cancellation Constructs
Composition of Contstructs (✓)
Runtime Library Routines (✓)
OMPT Interface
OMPD Interface
Environment Variables (✓)

LITERATURE
Official Resources

OpenMP Architecture Review Board. OpenMP Application Programming Interface. Version 5.2. Nov. 2021. URL:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
OpenMP Architecture Review Board. OpenMP Application Programming Interface. Examples. Version 5.1. Aug.
2021. URL: https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org

Recommended by https://www.openmp.org/resources/openmp-books/
Michael Klemm and Jim Cownie. High Performance Parallel Runtimes. De Gruyter Oldenbourg, 2021. ISBN:
9783110632729. DOI: doi:10.1515/9783110632729
Timothy G. Mattson, Yun He, and Alice E. Koniges. The OpenMP Common Core. Making OpenMP Simple Again.
1st ed. The MIT Press, Nov. 19, 2019. 320 pp. ISBN: 9780262538862
Ruud van der Pas, Eric Stotzer, and Christian Terboven. Using OpenMP—The Next Step. Affinity, Accelerators,
Tasking, and SIMD. 1st ed. The MIT Press, Oct. 13, 2017. 392 pp. ISBN: 9780262534789

Additional Literature
Michael McCool, James Reinders, and Arch Robison. Structured Parallel Programming. Patterns for Efficient
Computation. 1st ed. Morgan Kaufmann, July 31, 2012. 432 pp. ISBN: 9780124159938

Member of the Helmholtz Association August 12-16 2024 Slide 4

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.1.pdf
https://www.openmp.org
https://www.openmp.org/resources/openmp-books/
https://doi.org/doi:10.1515/9783110632729

LITERATURE
Older Works (https://www.openmp.org/resources/openmp-books/)

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. Portable Shared Memory Parallel
Programming. 1st ed. Scientific and Engineering Computation. The MIT Press, Oct. 12, 2007. 384 pp. ISBN:
9780262533027
Rohit Chandra et al. Parallel Programming in OpenMP. 1st ed. Morgan Kaufmann, Oct. 11, 2000. 231 pp. ISBN:
9781558606715
Michael Quinn. Parallel Programming in C with MPI and OpenMP. 1st ed. McGraw-Hill, June 5, 2003. 544 pp. ISBN:
9780072822564
Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns for Parallel Programming. 1st ed.
Software Patterns. Sept. 15, 2004. 384 pp. ISBN: 9780321228116

Member of the Helmholtz Association August 12-16 2024 Slide 4

https://www.openmp.org/resources/openmp-books/

THREADS & TASKS

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

OpenMP Thread

A thread that is managed by the OpenMP runtime system.

Team
A set of one or more threads participating in the execution of a parallel region.

Task
A specific instance of executable code and its data environment that the OpenMP imlementation can schedule for
execution by threads.

Member of the Helmholtz Association August 12-16 2024 Slide 5

LANGUAGE

Base Language

A programming language that serves as the foundation of the OpenMP specification.

The following base languages are given in [OpenMP-5.2, 1.7]: C90, C99, C11, C18, C++98, C++11, C++14, C++17, C++20,
Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, and a subset of Fortran 2018

Base Program

A programwritten in the base language.

OpenMP Program

A program that consists of a base program that is annotated with OpenMP directives or that calls OpenMP API
runtime library routines.

Directive
In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP program behavior.

Member of the Helmholtz Association August 12-16 2024 Slide 6

COMPILING & LINKING
Compilers that conform to the OpenMP specification usually accept a command line argument that turns on OpenMP
support, e.g.:

Intel C Compiler OpenMP Command Line Switch

$ icc -qopenmp ...

GNU Fortran Compiler OpenMP Command Line Switch

$ gfortran -fopenmp ...

The name of this command line argument is not mandated by the specification and differs from one compiler to
another.
Naturally, these arguments are then also accepted by the MPI compiler wrappers:

Compiling Programs with Hybrid Parallelization

$ mpicc -qopenmp ...

Member of the Helmholtz Association August 12-16 2024 Slide 7

RUNTIME LIBRARY DEFINITIONS [OpenMP-5.2, 18.1]

C/C++ Runtime Library Definitions

Runtime library routines and associated types are defined in the omp.h header file.

C #include <omp.h>

Fortran Runtime Library Definitions

Runtime library routines and associated types are defined in either a Fortran include file

F7
7 include "omp_lib.h"

or a Fortran 90 module

F0
8 use omp_lib

Member of the Helmholtz Association August 12-16 2024 Slide 8

WORLD ORDER IN OPENMP

Program starts as one single-threaded process.
Forks into teams of multiple threads when appropriate.
Stream of instructions might be different for each thread.
Information is exchanged via shared parts of memory.
OpenMP threads may be nested inside MPI processes.

𝑡0 𝑡1 𝑡2 …

Member of the Helmholtz Association August 12-16 2024 Slide 9

C AND C++ DIRECTIVE FORMAT [OpenMP-5.2, 3.1]
In C and C++, OpenMP directives are written using the #pragmamethod:

C #pragma omp directive-name [clause[[,] clause]...]

Directives are case-sensitive
Applies to the next statement which must be a structured block

Structured Block
An executable statement, possibly compound, with a single entry at the top and a single exit at the bottom, or an
OpenMP construct.

Member of the Helmholtz Association August 12-16 2024 Slide 10

FORTRAN DIRECTIVE FORMAT [OpenMP-5.2, 3.1.1, 3.1.2]
F0
8 sentinel directive-name [clause[[,] clause]...]

Directives are case-insensitive
Fixed Form Sentinels

F0
8 sentinel = !$omp | c$omp | *$omp

Must start in column 1
The usual line length, white space, continuation and column rules apply
Column 6 is blank for first line of directive, non-blank and non-zero for continuation

Free Form Sentinel

F0
8 sentinel = !$omp

The usual line length, white space and continuation rules apply

Member of the Helmholtz Association August 12-16 2024 Slide 11

QUIZ

Why were these formats chosen for OpenMP directives?

1 Syntax highlighting for pragmas and comments was already available in editors.
2 Pragmas and comments were already familiar to programmers so there was less new syntax to learn.
3 Compilers without support for OpenMP will just ignore the unknown pragmas and comments and thus

degrade gracefully.

Member of the Helmholtz Association August 12-16 2024 Slide 12

CONDITIONAL COMPILATION [OpenMP-5.2, 3.3]
C Preprocessor Macro

C #define _OPENMP yyyymm

yyyy and mm are the year andmonth the OpenMP specification supported by the compiler was published.
Fortran Fixed Form Sentinels

F0
8 !$ | *$ | c$

Must start in column 1
Only numbers or white space in columns 3–5
Column 6marks continuation lines

Fortran Free Form Sentinel

F0
8 !$

Must only be preceded by white space
Can be continued with ampersand

Member of the Helmholtz Association August 12-16 2024 Slide 13

THE PARALLEL CONSTRUCT [OpenMP-5.2, 10.1]
C

#pragma omp parallel [clause[[,] clause]...]
structured-block

F0
8

!$omp parallel [clause[[,] clause]...]
structured-block

!$omp end parallel

Creates a team of threads to execute the parallel region
Each thread executes the code contained in the structured block
Inside the region threads are identified by consecutive numbers starting at zero
Optional clauses (explained later) can be used to modify behavior and data environment of the parallel
region

Member of the Helmholtz Association August 12-16 2024 Slide 14

THREAD COORDINATES [OpenMP-5.2, 18.2.2, 18.2.4]
Team size

C int omp_get_num_threads(void);

F0
8 integer function omp_get_num_threads()

Returns the number of threads in the current team

Thread number

C int omp_get_thread_num(void);

F0
8 integer function omp_get_thread_num()

Returns the number that identifies the calling thread within the current team (between zero and
omp_get_num_threads())

Member of the Helmholtz Association August 12-16 2024 Slide 15

A FIRST OPENMP PROGRAM
C

#include <stdio.h>
#include <omp.h>

int main(void) {
printf("Hello from your main thread.\n");

#pragma omp parallel
printf("Hello from thread %d of %d.\n", omp_get_thread_num(),

omp_get_num_threads());↪

printf("Hello again from your main thread.\n");
}

Member of the Helmholtz Association August 12-16 2024 Slide 16

A FIRST OPENMP PROGRAM

Program Output

$ gcc -fopenmp -o hello_openmp.x hello_openmp.c
$./hello_openmp.x
Hello from your main thread.
Hello from thread 1 of 8.
Hello from thread 0 of 8.
Hello from thread 3 of 8.
Hello from thread 4 of 8.
Hello from thread 6 of 8.
Hello from thread 7 of 8.
Hello from thread 2 of 8.
Hello from thread 5 of 8.
Hello again from your main thread.

Member of the Helmholtz Association August 12-16 2024 Slide 16

A FIRST OPENMP PROGRAM
F0
8

program hello_openmp
use omp_lib
implicit none

print *, "Hello from your main thread."

!$omp parallel
print *, "Hello from thread ", omp_get_thread_num(), " of ",

omp_get_num_threads(), "."↪

!$omp end parallel

print *, "Hello again from your main thread."
end program

Member of the Helmholtz Association August 12-16 2024 Slide 16

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Thread 1
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 17

PARALLEL CONTROL FLOW (IN OPENMP)

Thread 0
program hello_openmp
print *, "Hello..."
!$omp parallel
print *, "Hello..."
!$omp end parallel
print *, "Hello..."

end program

Console

Hello from your main thread.
Hello from thread 1 of 2.
Hello from thread 0 of 2.
Hello again from your main thread.

Member of the Helmholtz Association August 12-16 2024 Slide 17

EXERCISES
Ex
er
ci
se

1
–
W
ar
m

Up

1.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90}, fill in the missing body of the function/subroutine axpy_serial(a, x,
y, z[, n]) so that it implements the generalized vector addition (in serial, without making use of
OpenMP):

𝐳 = 𝑎𝐱 + 𝐲.

Compile the file into a program and run it to test your implementation.

1.2 Dot Product
In the file dot.{c|c++|f90}, fill in the missing body of the function/subroutine dot_serial(x, y[,
n]) so that it implements the dot product (in serial, without making use of OpenMP):

dot(𝐱, 𝐲) = ∑
𝑖

𝑥𝑖𝑦𝑖.

Compile the file into a program and run it to test your implementation.

Member of the Helmholtz Association August 12-16 2024 Slide 18

Part II: Low-Level OpenMP Concepts

Member of the Helmholtz Association

MAGIC

Any sufficiently advanced technology is indistinguishable frommagic. (Arthur C. Clarke2)

2Arthur C. Clarke. Profiles of the future : an inquiry into the limits of the possible. London: Pan Books, 1973. ISBN: 9780330236195.

Member of the Helmholtz Association August 12-16 2024 Slide 19

INTERNAL CONTROL VARIABLES [OpenMP-5.2, 2]

Internal Control Variable (ICV)

A conceptual variable that specifies runtime behavior of a set of threads or tasks in an OpenMP program.

Set to an initial value by the OpenMP implementation
Some can bemodified through either environment variables (e.g. OMP_NUM_THREADS) or API routines (e.g.
omp_set_num_threads())
Some can be read through API routines (e.g. omp_get_max_threads())
Some are inaccessible to the user
Might have different values in different scopes (e.g. data environment, device, global)
Some can be overridden by clauses (e.g. the num_threads() clause)
Export OMP_DISPLAY_ENV=TRUE or call omp_display_env(1) to inspect the value of ICVs that
correspond to environment variables [OpenMP-5.2, 18.15, 21.7]

Member of the Helmholtz Association August 12-16 2024 Slide 20

PARALLELISM CLAUSES [OpenMP-5.2, 3.4, 10.1.2]
if Clause

C if([parallel :] scalar-expression)

F0
8 if([parallel :] scalar-logical-expression)

If false, the region is executed only by the encountering thread(s) and no additional threads are forked.

num_threads Clause

C num_threads(integer-expression)

F0
8 num_threads(scalar-integer-expression)

Requests a team size equal to the value of the expression (overrides the nthreads-var ICV)

Member of the Helmholtz Association August 12-16 2024 Slide 21

EXAMPLE
A parallel directive with an if clause and associated structured block in C:

C

#pragma omp parallel if(length > threshold)
{
statement0;
statement1;
statement2;

}

A parallel directive with a num_threads clause and associated structured block in Fortran:

F0
8

!$omp parallel num_threads(64)
statement1
statement2
statement3
!$omp end parallel

Member of the Helmholtz Association August 12-16 2024 Slide 22

CONTROLLING THE nthreads-var ICV
omp_set_num_threads API Routine [OpenMP-5.2, 18.2.1]

C void omp_set_num_threads(int num_threads);

F0
8 subroutine omp_set_num_threads(num_threads)

integer num_threads

Sets the ICV that controls the number of threads to fork for parallel regions (without num_threads clause)
encountered subsequently.

omp_get_max_threads API Routine [OpenMP-5.2, 18.2.3]

C int omp_get_max_threads(void);

F0
8 integer function omp_get_max_threads()

Queries the ICV that controls the number of threads to fork.

Member of the Helmholtz Association August 12-16 2024 Slide 23

THREAD LIMIT & DYNAMIC ADJUSTMENT
omp_get_thread_limit API Routine [OpenMP-5.2, 18.2.13]

C int omp_get_thread_limit(void);

F0
8 integer function omp_get_thread_limit()

Upper bound on the number of threads used in a program.

omp_get_dynamic and omp_set_dynamic API Routines [OpenMP-5.2, 18.2.6, 18.2.7]

C

int omp_get_dynamic(void);
void omp_set_dynamic(int dynamic);

F0
8

logical function omp_get_dynamic()
subroutine omp_set_dynamic(dynamic)
logical dynamic

Enable or disable dynamic adjustment of the number of threads.
Member of the Helmholtz Association August 12-16 2024 Slide 24

INSIDE OF A PARALLEL REGION?
omp_in_parallel API Routine [OpenMP-5.2, 18.2.5]

C int omp_in_parallel(void);

F0
8 logical function omp_in_parallel()

Is this code being executed as part of a parallel region?

Member of the Helmholtz Association August 12-16 2024 Slide 25

EXERCISES
Ex
er
ci
se

2
–
Co

nt
ro
lli
ng

pa
ra
ll
el

2.1 Controlling the Number of Threads

Use hello_openmp.{c|c++|f90} to play around with the various ways to set the number of threads
forked for a parallel region:

The OMP_NUM_THREADS environment variable
The omp_set_num_threads API routine
The num_threads clause
The if clause

Inspect the number of threads that are actually forked using omp_get_num_threads.

2.2 Limits of the OpenMP Implementation

Determine the maximum number of threads allowed by the OpenMP implementation you are using and check
whether it supports dynamic adjustment of the number of threads.

Member of the Helmholtz Association August 12-16 2024 Slide 26

DATA-SHARING ATTRIBUTES [OpenMP-5.2, 5.1]

Variable
A named data storage block, for which the value can be defined and redefined during the execution of a program.

Private Variable
With respect to a given set of task regions that bind to the same parallel region, a variable for which the name
provides access to a different block of storage for each task region.

Shared Variable
With respect to a given set of task regions that bind to the same parallel region, a variable for which the name
provides access to the same block of storage for each task region.

Member of the Helmholtz Association August 12-16 2024 Slide 27

CONSTRUCTS & REGIONS

Construct
An OpenMP executable directive (and for Fortran, the paired end directive, if any) and the associated statement,
loop or structured block, if any, not including the code in any called routines. That is, the lexical extent of an
executable directive.

Region

All code encountered during a specific instance of the execution of a given construct or of an OpenMP library
routine.

Executable Directive
An OpenMP directive that is not declarative. That is, it may be placed in an executable context.

Member of the Helmholtz Association August 12-16 2024 Slide 28

CONSTRUCTS & REGIONS EXAMPLE
C

int main(void) {
#pragma omp parallel
{

f();
if (true) {
statement;

} else {
statement;

}
}

}

C

void f(void) {
statement;
statement;
statement;

}

Member of the Helmholtz Association August 12-16 2024 Slide 29

DATA-SHARING ATTRIBUTE RULES I [OpenMP-5.2, 5.1.1]
The rules that determine the data-sharing attributes of variables referenced from the inside of a construct fall into one
of the following categories:
Pre-determined

Variables with automatic storage duration declared inside the construct are private (C and C++)
Objects with dynamic storage duration are shared (C and C++)
Variables with static storage duration declared in the construct are shared (C and C++)
Static data members are shared (C++)
Loop iteration variables are private (Fortran)
Implied-do indices and forall indices are private (Fortran)
Assumed-size arrays are shared (Fortran)

Explicit
Data-sharing attributes are determined by explicit clauses on the respective constructs.
Implicit
If the data-sharing attributes are neither pre-determined nor explicitly determined, they fall back to the attribute
determined by the default clause, or shared if no default clause is present.

Member of the Helmholtz Association August 12-16 2024 Slide 30

DATA-SHARING ATTRIBUTE RULES II [OpenMP-5.2, 5.1.2]
The data-sharing attributes of variables inside regions, not constructs, are governed by simpler rules:

Static variables (C and C++) and variables with the save attribute (Fortran) are shared
File-scope (C and C++) or namespace-scope (C++) variables and common blocks or variables accessed through
use or host association (Fortran) are shared
Objects with dynamic storage duration are shared (C and C++)
Static data members are shared (C++)
Arguments passed by reference have the same data-sharing attributes as the variable they are referencing (C++
and Fortran)
Implied-do indices, forall indices are private (Fortran)
Local variables are private

Member of the Helmholtz Association August 12-16 2024 Slide 31

THE SHARED CLAUSE [OpenMP-5.2, 5.4.2]
* shared(list)

Declares the listed variables to be shared.
The programmer must ensure that shared variables are alive while they are shared.
Shared variables must not be part of another variable (i.e. array or structure elements).

Member of the Helmholtz Association August 12-16 2024 Slide 32

THE PRIVATE CLAUSE [OpenMP-5.2, 5.4.3]
* private(list)

Declares the listed variables to be private.
All threads have their own new versions of these variables.
Private variables must not be part of another variable.
If private variables are of class type, a default constructor must be accessible. (C++)
The type of a private variable must not be const-qualified, incomplete or reference to incomplete. (C and C++)
Private variables must either be definable or allocatable. (Fortran)
Private variables must not appear in namelist statements, variable format expressions or expressions for
statement function definitions. (Fortran)
Private variables must not be pointers with intent(in). (Fortran)

Member of the Helmholtz Association August 12-16 2024 Slide 33

FIRSTPRIVATE CLAUSE [OpenMP-5.2, 5.4.4]
* firstprivate(list)

Like private, but initialize the new versions of the variables to have the same value as the variable that exists before
the construct.

Non-array variables are initialized by copy assignment (C and C++)
Arrays are initialize by element-wise assignment (C and C++)
Copy constructors are invoked if present (C++)
Non-pointer variables are initialized by assignment or not associated if the original variable is not associated
(Fortran)
pointer variables are initialized by pointer assignment (Fortran)

Member of the Helmholtz Association August 12-16 2024 Slide 34

DEFAULT CLAUSE [OpenMP-5.2, 5.4.1]
C and C++

C default(shared | none)

Fortran

F0
8 default(private | firstprivate | shared | none)

Determines the data-sharing attributes for all variables referenced from inside of a region that have neither
pre-determined nor explicit data-sharing attributes.

default(none) forces the programmer to make data-sharing attributes explicit if they are not pre-determined.
This can help clarify the programmer’s intentions to someone who does not have the implicit data-sharing rules in
mind.

Member of the Helmholtz Association August 12-16 2024 Slide 35

REDUCTION CLAUSE [OpenMP-5.2, 5.5.8]
* reduction(reduction-identifier : list)

Listed variables are declared private.
At the end of the construct, the original variable is updated by combining the private copies using the operation
given by reduction-identifier.
reduction-identifiermay be +, -, *, &, |, ^, &&, ||, min or max (C and C++) or an identifier (C) or an
id-expression (C++)
reduction-identifiermay be a base language identifier, a user-defined operator, or one of +, -, *,
.and., .or., .eqv., .neqv., max, min, iand, ior or ieor (Fortran)
Private versions of the variable are initialized with appropriate values

Member of the Helmholtz Association August 12-16 2024 Slide 36

QUIZ

Which exercise represents a reduction?

1 None
2 Generalized vector addition (AXPY)
3 Dot product
4 Both

Member of the Helmholtz Association August 12-16 2024 Slide 37

EXERCISES
Ex
er
ci
se

3
–
Da

ta
-s
ha

rin
g
At
tr
ib
ut
es 3.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel(a, x, y, z[, n])
that uses multiple threads to perform a generalized vector addition. Modify the main part of the program to
have your function/subroutine tested.
Hints:

Use the parallel construct and the necessary clauses to define an appropriate data environment.
Use omp_get_thread_num() and omp_get_num_threads() to decompose the work.

Member of the Helmholtz Association August 12-16 2024 Slide 38

THREAD SYNCHRONIZATION
In MPI, exchange of data between processes implies synchronization through the message metaphor.
In OpenMP, threads exchange data through shared parts of memory.
Explicit synchronization is needed to coordinate access to sharedmemory.

Data Race
A data race occurs when

multiple threads write to the samememory unit without synchronization or
at least one thread writes to and at least one thread reads from the samememory unit without
synchronization.

Data races result in unspecified program behavior.
OpenMP offers several synchronization mechanism which range from high-level/general to low-level/specialized.

Member of the Helmholtz Association August 12-16 2024 Slide 39

THE BARRIER CONSTRUCT [OpenMP-5.2, 15.3.1]
C #pragma omp barrier

F0
8 !$omp barrier

Threads are only allowed to continue execution of code after the barrier once all threads in the current team
have reached the barrier.
A barrier region must be executed by all threads in the current team or none.

Member of the Helmholtz Association August 12-16 2024 Slide 40

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

BARRIER CONTROL FLOW

Thread 0
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Thread 1
program hello_barrier
...
statement1
!$omp barrier
statement2
...

end program

Member of the Helmholtz Association August 12-16 2024 Slide 41

THE CRITICAL CONSTRUCT [OpenMP-5.2, 15.2]
C

#pragma omp critical [(name)]
structured-block

F0
8

!$omp critical [(name)]
structured-block

!$omp end critical [(name)]

Execution of critical regions with the same name are restricted to one thread at a time.
name is a compile time constant.
In C, names live in their own name space.
In Fortran, names of critical regions can collide with other identifiers.

Member of the Helmholtz Association August 12-16 2024 Slide 42

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

CRITICAL CONTROL FLOW

Thread 0
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Thread 1
program hello_critical
...
statement1
!$omp critical
print *, "Hello..."
print *, "Again..."
!$omp end critical
statement2

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

LOCK ROUTINES [OpenMP-5.2, 18.9]
C

void omp_init_lock(omp_lock_t* lock);
void omp_destroy_lock(omp_lock_t* lock);
void omp_set_lock(omp_lock_t* lock);
void omp_unset_lock(omp_lock_t* lock);

F0
8

subroutine omp_init_lock(svar)
subroutine omp_destroy_lock(svar)
subroutine omp_set_lock(svar)
subroutine omp_unset_lock(svar)
integer(kind = omp_lock_kind) :: svar

Like critical sections, but identified by runtime value rather than global name
Locks must be shared between threads
Initialize a lock before first use
Destroy a lock when it is no longer needed
Lock and unlock using the set and unset routines
set blocks if lock is already set

Member of the Helmholtz Association August 12-16 2024 Slide 44

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Thread 1
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

LOCK CONTROL FLOW

Thread 0
program hello_critical
call omp_init_lock(lock)
!$omp parallel
call omp_set_lock(lock)
print *, "Hello..."
print *, "Again..."
call omp_unset_lock(lock)
!$omp end parallel
call omp_destroy_lock(lock)

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 1 of 2.
Hello from thread 0 of 2.
Again, hello from thread 0 of 2.

THE ATOMIC AND FLUSH CONSTRUCTS [OpenMP-5.2, 15.8.4,
15.8.5]

barrier, critical, and locks implement synchronization between general blocks of code
If blocks become very small, synchronization overhead could become an issue
The atomic and flush constructs implement low-level, fine grained synchronization for certain limited
operations on scalar variables:

read
write
update, writing a new value based on the old value
capture, like update and the old or new value is available in the subsequent code

Correct use requires knowledge of the OpenMP Memory Model [OpenMP-5.2, 1.4]
See also: C11 and C++11 Memory Models

Member of the Helmholtz Association August 12-16 2024 Slide 46

EXERCISES
Ex
er
ci
se

4
–
Th

re
ad

Sy
nc

hr
on

iza
tio

n 4.1 Dot Product
In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel(x, y[, n]) that uses
multiple threads to perform the dot product. Do not use the reduction clause. Modify the main part of the
program to have your function/subroutine tested.
Hint:

Decomposition of the work load should be similar to the last exercise
Partial results of different threads should be combined in a shared variable
Use a suitable synchronization mechanism to coordinate access

Bonus
Use the reduction clause to simplify your program.

Member of the Helmholtz Association August 12-16 2024 Slide 47

Part III: Worksharing

Member of the Helmholtz Association

WORKSHARING CONSTRUCTS
Decompose work for concurrent execution by multiple threads
Used inside parallel regions
Available worksharing constructs:

single and sections construct
loop construct
workshare construct
taskworksharing

Member of the Helmholtz Association August 12-16 2024 Slide 48

THE SINGLE CONSTRUCT [OpenMP-5.2, 11.1]
C

#pragma omp single [clause[[,] clause]...]
structured-block

F0
8

!$omp single [clause[[,] clause]...]
structured-block

!$omp end single [end_clause[[,] end_clause]...]

The structured block is executed by a single thread in the encountering team.
Permissible clauses are firstprivate, private, copyprivate and nowait.
nowait and copyprivate are end_clauses in Fortran.

Member of the Helmholtz Association August 12-16 2024 Slide 49

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 50

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single
print *, "Again..."
!$omp end parallel

end program

Console

Hello from thread 1 of 2.
Again, hello from thread 0 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 50

IMPLICIT BARRIERS & THE NOWAIT CLAUSE [OpenMP-5.2,
15.3.2, 15.6]

Worksharing constructs (and the parallel construct) contain an implied barrier at their exit.
The nowait clause can be used on worksharing constructs to disable this implicit barrier.

Member of the Helmholtz Association August 12-16 2024 Slide 51

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association August 12-16 2024 Slide 52

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Member of the Helmholtz Association August 12-16 2024 Slide 52

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 52

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 52

SINGLE CONTROL FLOW

Thread 0
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Thread 1
program hello_single
!$omp parallel
!$omp single
print *, "Hello..."
!$omp end single nowait
print *, "Again..."
!$omp end parallel

end program

Console

Again, hello from thread 0 of 2.
Hello from thread 1 of 2.
Again, hello from thread 1 of 2.

Member of the Helmholtz Association August 12-16 2024 Slide 52

THE COPYPRIVATE CLAUSE [OpenMP-5.2, 5.7.2]
* copyprivate(list)

list contains variables that are private in the enclosing parallel region.
At the end of the single construct, the values of all list items on the single thread are copied to all other
threads.
E.g. serial initialization
copyprivate cannot be combined with nowait.

Member of the Helmholtz Association August 12-16 2024 Slide 53

WORKSHARING-LOOP CONSTRUCT [OpenMP-5.2, 11.5]
C

#pragma omp for [clause[[,] clause]...]
for-loops

F0
8

!$omp do [clause[[,] clause]...]
do-loops

[!$omp end do [nowait]]

Declares the iterations of a loop to be suitable for concurrent execution onmultiple threads.

Data-environment clauses

private
firstprivate

lastprivate
reduction

Worksharing-Loop-specific clauses

schedule
collapse

Member of the Helmholtz Association August 12-16 2024 Slide 54

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 1, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Thread 1

...
!$omp parallel
!$omp do
do i = 3, 4
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...

Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

WORKSHARING-LOOP CONTROL FLOW

Thread 0

...
!$omp parallel
!$omp do
do i = 1, 2
print *, "iteration: ", i, ...

end do
!$omp end do
!$omp end parallel
...
Console

iteration 3 on thread 1
iteration 1 on thread 0
iteration 2 on thread 0
iteration 4 on thread 1

CANONICAL NEST LOOP FORM [OpenMP-5.2, 4.4.1]
In C and C++ the for-loopsmust have the following form:

C for ([type] var = lb; var relational-op b; incr-expr) structured-block

C+
+

for (range-decl: range-expr) structured-block

var can be an integer, a pointer, or a random access iterator
incr-expr increments (or decrements) var, e.g. var = var + incr
The increment incrmust not change during execution of the loop
For nested loops, the bounds of an inner loop (b and lb) may depend at most linearly on the iteration variable of
an outer loop, i.e. a0 + a1 * var-outer
varmust not be modified by the loop body
The beginning of the range has to be a random access iterator
The number of iterations of the loopmust be known beforehand

Member of the Helmholtz Association August 12-16 2024 Slide 56

CANONICAL NEST LOOP FORM [OpenMP-5.2, 4.4.1]
In Fortran the do-loopsmust have the following form:

F0
8 do [label] var = lb, b[, incr]

varmust be of integer type
incrmust be invariant with respect to the outermost loop
The loop bounds b and lb of an inner loopmay depend at most linearly on the iteration variable of an outer
loop, i.e. a0 + a1 * var-outer
The number of iterations of the loopmust be known beforehand

Member of the Helmholtz Association August 12-16 2024 Slide 56

THE COLLAPSE CLAUSE [OpenMP-5.2, 4.4.3]
* collapse(n)

The loop directive applies to the outermost loop of a set of nested loops, by default
collapse(n) extends the scope of the loop directive to the n outer loops
All associated loops must be perfectly nested, i.e.:

C

for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {

// ...
}

}

Member of the Helmholtz Association August 12-16 2024 Slide 57

THE SCHEDULE CLAUSE [OpenMP-5.2, 11.5.3]
* schedule(kind[, chunk_size])

Determines how the iteration space is divided into chunks and how these chunks are distributed among threads.
static Divide iteration space into chunks of chunk_size iterations and distribute them in a round-robin

fashion among threads. If chunk_size is not specified, chunk size is chosen such that each thread gets
at most one chunk.

dynamic Divide into chunks of size chunk_size (defaults to 1). When a thread is done processing a chunk it
acquires a new one.

guided Like dynamic but chunk size is adjusted, starting with large sizes for the first chunks and decreasing to
chunk_size (default 1).

auto Let the compiler and runtime decide.
runtime Schedule is chosen based on ICV run-sched-var.
If no schedule clause is present, the default schedule is implementation defined.

Member of the Helmholtz Association August 12-16 2024 Slide 58

WORKSHARE (FORTRAN ONLY) [OpenMP-5.2, 11.4]
F0
8

!$omp workshare
structured-block

!$omp end workshare [nowait]

The structured block may contain:
array assignments
scalar assignments
forall constructs
where statements and constructs
atomic, critical and parallel constructs

Where possible, these are decomposed into independent units of work and executed in parallel.

Member of the Helmholtz Association August 12-16 2024 Slide 59

COMBINED CONSTRUCTS [OpenMP-5.2, 17]
Some constructs that often appear as nested pairs can be combined into one construct, e.g.

C

#pragma omp parallel
#pragma omp for
for (...; ...; ...) {
...

}

can be turned into

C

#pragma omp parallel for
for (...; ...; ...) {
...

}

Similarly, parallel and workshare can be combined.
Combined constructs usually accept the clauses of either of the base constructs.

Member of the Helmholtz Association August 12-16 2024 Slide 60

EXERCISES
Ex
er
ci
se

5
–
Lo

op
W
or
ks
ha

rin
g 5.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel_for(a, x, y, z[,
n]) that uses loop worksharing to perform the generalised vector addition.

5.2 Dot Product
In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel_for(x, y[, n]) that
uses loop worksharing to perform the dot product.
Caveat: Make sure to correctly synchronize access to the accumulator variable.

Member of the Helmholtz Association August 12-16 2024 Slide 61

EXERCISES
Ex
er
ci
se

6
–
wo
rk
sh
ar
e
Co

ns
tr
uc
t 6.1 Generalized Vector Addition (axpy)

In the file axpy.f90 add a new subroutine axpy_parallel_workshare(a, x, y, z) that uses the
workshare construct to perform the generalized vector addition.

6.2 Dot Product
In the file dot.f90 add a new function dot_parallel_workshare(x, y) that uses the workshare
construct to perform the dot product.
Caveat: Make sure to correctly synchronize access to the accumulator variable.

Member of the Helmholtz Association August 12-16 2024 Slide 62

Part IV: Task Worksharing

Member of the Helmholtz Association

TASK TERMINOLOGY

Task
A specific instance of executable code and its data environment, generated when a thread encounters a task,
taskloop, parallel, target or teams construct.

Child Task
A task is a child task of its generating task region. A child task region is not part of its generating task region.

Descendent Task
A task that is the child task of a task region or of one of its descendent task regions.

Sibling Task

Tasks that are child tasks of the same task region.

Member of the Helmholtz Association August 12-16 2024 Slide 63

TASK LIFE-CYCLE
Execution of tasks can be deferred and suspended
Scheduling is done by the OpenMP runtime system at scheduling points
Scheduling decisions can be influenced by e.g. task dependencies and task priorities

created

deferred

running

suspended

completed

Member of the Helmholtz Association August 12-16 2024 Slide 64

THE TASK CONSTRUCT [OpenMP-5.2, 12.5]
C

#pragma omp task [clause[[,] clause]...]
structured-block

F0
8

!$omp task [clause[[,] clause]...]
structured-block

!$omp end task

Creates a task. Execution of the task may commence immediately or be deferred.

Data-environment clauses

private
firstprivate
shared

Task-specific clauses

if
final
untied

mergeable
depend
priority

Member of the Helmholtz Association August 12-16 2024 Slide 65

TASK DATA-ENVIRONMENT [OpenMP-5.2, 5.1.1]
The rules for implicitly determined data-sharing attributes of variables referenced in task generating constructs are
slightly different from other constructs:
If no default clause is present and

the variable is shared by all implicit tasks in the enclosing context, it is also shared by the generated task,
otherwise, the variable is firstprivate.

Member of the Helmholtz Association August 12-16 2024 Slide 66

THE IF CLAUSE [OpenMP-5.2, 3.4, 12.5]
* if([task:] scalar-expression)

If the scalar expression evaluates to false:
Execution of the current task

is suspended and
may only be resumed once the generated task is complete

Execution of the generated task may commence immediately

Undeferred Task
A task for which execution is not deferred with respect to its generating task region. That is, its generating task
region is suspended until execution of the undeferred task is completed.

Member of the Helmholtz Association August 12-16 2024 Slide 67

THE FINAL CLAUSE [OpenMP-5.2, 12.3]
* final(scalar-expression)

If the scalar expression evaluates to true all descendent tasks of the generated task are
undeferred and
executed immediately.

Final Task
A task that forces all of its child tasks to become final and included tasks.

Included Task
A task for which execution is sequentially included in the generating task region. That is, an included task is
undeferred and executed immediately by the encountering thread.

Member of the Helmholtz Association August 12-16 2024 Slide 68

THE UNTIED CLAUSE [OpenMP-5.2, 12.1]
* untied

The generated task is untied meaning it can be suspended by one thread and resume execution on another.
By default, tasks are generated as tied tasks.

Untied Task
A task that, when its task region is suspended, can be resumed by any thread in the team. That is, the task is not
tied to any thread.

Tied Task
A task that, when its task region is suspended, can be resumed only by the same thread that suspended it. That is,
the task is tied to that thread.

Member of the Helmholtz Association August 12-16 2024 Slide 69

THE PRIORITY CLAUSE [OpenMP-5.2, 12.4]
* priority(priority-value)

priority-value is a scalar non-negative numerical value
Priority influences the order of task execution
Among tasks that are ready for execution, those with a higher priority are more likely to be executed next

Member of the Helmholtz Association August 12-16 2024 Slide 70

THE DEPEND CLAUSE [OpenMP-5.2, 15.9.5]
*

depend(in: list)
depend(out: list)
depend(inout: list)

list contains storage locations
A task with a dependence on x, depend(in: x), has to wait for completion of previously generated sibling
tasks with depend(out: x) or depend(inout: x)
A task with a dependence depend(out: x) or depend(inout: x) has to wait for completion of
previously generated sibling tasks with any kind of dependence on x
in, out and inout correspond to intended read and/or write operations to the listed variables.

Dependent Task

A task that because of a task dependence cannot be executed until its predecessor tasks have completed.

Member of the Helmholtz Association August 12-16 2024 Slide 71

TASK SCHEDULING POLICY [OpenMP-5.2, 12.9]
The task scheduler of the OpenMP runtime environment becomes active at task scheduling points. It may then

begin execution of a task or
resume execution of untied tasks or tasks tied to the current thread.

Task scheduling points

generation of an explicit task
task completion
taskyield regions
taskwait regions
the end of taskgroup regions
implicit and explicit barrier regions

Member of the Helmholtz Association August 12-16 2024 Slide 72

THE TASKYIELD CONSTRUCT [OpenMP-5.2, 12.7]
C #pragma omp taskyield

F0
8 !$omp taskyield

Notifies the scheduler that execution of the current task may be suspended at this point in favor of another task
Inserts an explicit scheduling point

Member of the Helmholtz Association August 12-16 2024 Slide 73

THE TASKWAIT& TASKGROUP CONSTRUCTS [OpenMP-5.2,
15.4, 15.5]

C #pragma omp taskwait

F0
8 !$omp taskwait

Suspends the current task until all child tasks are completed.

C

#pragma omp taskgroup
structured-block

F0
8

!$omp taskgroup
structured-block

!$omp end taskgroup

The current task is suspended at the end of the taskgroup region until all descendent tasks generated within the
region are completed.

Member of the Helmholtz Association August 12-16 2024 Slide 74

TASK CONTROL FLOW
C

unsigned fib(unsigned n) {
if (n < 2) return n;
unsigned a, b;
a = fib(n - 1);
b = fib(n - 2);
return a + b;

}

int main(int argc, char* argv[]) {
printf("fib(3) = %u\n", fib(3));

}

TASK CONTROL FLOW
C

unsigned fib(unsigned n) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

int main(int argc, char* argv[]) {
#pragma omp parallel
#pragma omp single
printf("fib(3) = %u\n", fib(3));

}

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1

Tasks:

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1

Tasks: fib(2)

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1

Tasks: fib(2), fib(1)

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(1), fib(3)...

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 1) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(3)..., fib(1)

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 1) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(3)..., fib(1), fib(0)

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 1) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(3)..., fib(0), fib(2)...

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 1) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 0) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(3)..., fib(2)...

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 0) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks: fib(2)...

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks:

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1
unsigned fib(unsigned n = 2) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}
Tasks:

TASK CONTROL FLOW

Thread 0
unsigned fib(unsigned n = 3) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
#pragma omp task default(shared)
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

Thread 1

Tasks:

TASK CONTROL FLOW
C

unsigned fib(unsigned n) {
if (n < 2) return n;
unsigned a, b;
#pragma omp task default(shared)
a = fib(n - 1);
b = fib(n - 2);
#pragma omp taskwait
return a + b;

}

int main(int argc, char* argv[]) {
#pragma omp parallel
#pragma omp single
printf("fib(3) = %u\n", fib(3));

}

EXERCISES
Ex
er
ci
se

7
–
Ta
sk

w
or
ks
ha

rin
g 7.1 Generalized Vector Addition (axpy)

In the file axpy.{c|c++|f90} add a new function/subroutine axpy_parallel_task(a, x, y, z[,
n]) that uses task worksharing to perform the generalized vector addition.

7.2 Dot Product
In the file dot.{c|c++|f90} add a new function/subroutine dot_parallel_task(x, y[, n]) that
uses task worksharing to perform the dot product.
Caveat: Make sure to correctly synchronize access to the accumulator variable.

Member of the Helmholtz Association August 12-16 2024 Slide 76

	First Steps with OpenMP
	What is OpenMP?
	Terminology
	Infrastructure
	Basic Program Structure
	Exercises

	Low-Level OpenMP Concepts
	Introduction
	Exercises
	Data Environment
	Exercises
	Thread Synchronization
	Exercises

	Worksharing
	Introduction
	The single construct
	single Clauses
	The loop construct
	loop Clauses
	workshare Construct
	Combined Constructs
	Exercises

	Task Worksharing
	Introduction
	The task Construct
	task Clauses
	Task Scheduling
	Task Synchronization
	Exercises

