
Part XI: Communicators

Member of the Helmholtz Association

MOTIVATION
Communicators are a scope for communication within (intra-communicators) or between groups
(inter-communicators) of processes. New communicators with different scope or topological properties can be used
to accommodate certain needs.

Separation of communication spaces: A software library that uses MPI underneath is used in an application that
directly uses MPI itself. Communication due to the library should not conflict with communication due to the
application.
Partitioning of process groups: Parts of your software exhibit a collective communication pattern, but only
across a subset of processes.
Exploiting inherent topology: Your application uses a regular cartesian grid to discretize the problem and this
translates into certain nearest neighbor communication patterns.

Member of the Helmholtz Association August 12-16 2024 Slide 216

DUPLICATE [MPI-4.0, 7.4.2]
C int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

F0
8

MPI_Comm_dup(comm, newcomm, ierror)
type(MPI_Comm), intent(in) :: comm
type(MPI_Comm), intent(out) :: newcomm
integer, optional, intent(out) :: ierror

Duplicates an existing communicator comm
New communicator has the same properties but a new context

Member of the Helmholtz Association August 12-16 2024 Slide 217

SPLIT [MPI-4.0, 7.4.2]
C int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

F0
8

MPI_Comm_split(comm, color, key, newcomm, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(in) :: color, key
type(MPI_Comm), intent(out) :: newcomm
integer, optional, intent(out) :: ierror

Collective call, needs to be called by all processes in communicator comm
Splits the processes in a communicator into disjoint subgroups
Processes are grouped by color, one new communicator per distinct value
Special color value MPI_UNDEFINED does not create a new communicator (MPI_COMM_NULL is returned in
newcomm)
Processes in new communicator are ordered by ascending value of key, for equal key values according to their
rank in the old group

Member of the Helmholtz Association August 12-16 2024 Slide 218

SPLIT [MPI-4.0, 7.4.2]

0
c: 0, k: 0

1
c: 1, k: 1

2
c: 0, k: 1

3
c: 1, k: 0

4
c: 0, k: 1

5
c: –, k: 0

0
c: 0, k: 0

1
c: 0, k: 1

2
c: 0, k: 1

0
c: 1, k: 0

1
c: 1, k: 1

–
c: –, k: 0

Member of the Helmholtz Association August 12-16 2024 Slide 218

CREATE [MPI-4.0, 7.4.2]
C int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

F0
8

MPI_Comm_create(comm, group, newcomm, ierror)
type(MPI_Comm), intent(out) :: comm
type(MPI_Group), intent(out) :: group
type(MPI_Comm), intent(out) :: newcomm
integer, optional, intent(out) :: ierror

Collective call, needs to be called by all processes in communicator comm
Takes as argument handle to a subgroup of the group associated with communicator comm

Member of the Helmholtz Association August 12-16 2024 Slide 219

GROUPS [MPI-4.0, 7.3.2]
C int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

C

int MPI_Group_incl(MPI_Group group, int n, const int ranks[], MPI_Group
*newgroup)↪

process with rank i in newgroup is the process with rank ranks[i] in group
elements of ranks must be a valid rank in group and all elements must be distinct

C int MPI_Group_free(MPI_Group *group)

Member of the Helmholtz Association August 12-16 2024 Slide 220

CARTESIAN TOPOLOGY [MPI-4.0, 8.5.1]
C

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[], const
int periods[], int reorder, MPI_Comm *comm_cart)↪

F0
8

MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)
type(MPI_Comm), intent(in) :: comm_old
integer, intent(in) :: ndims, dims(ndims)
logical, intent(in) :: periods(ndims), reorder
type(MPI_Comm), intent(out) :: comm_cart
integer, optional, intent(out) :: ierror

Creates a new communicator with processes arranged on a (possibly periodic) Cartesian grid
The grid has ndims dimensions and dims[i] points in dimension i
If reorder is true, MPI is free to assign new ranks to processes

Member of the Helmholtz Association August 12-16 2024 Slide 221

CARTESIAN TOPOLOGY [MPI-4.0, 8.5.1]
Input:
comm_old contains 12 processes (or more)
ndims = 2, dims = [4, 3],
periods = [.false., .false.]
reorder = .false.
Output:
process 0–11: new communicator with
topology as shown
process 12–: MPI_COMM_NULL

0 1 2 3

0

1

2

0
(0, 0)

3
(1, 0)

6
(2, 0)

9
(3, 0)

1
(0, 1)

4
(1, 1)

7
(2, 1)

10
(3, 1)

2
(0, 2)

5
(1, 2)

8
(2, 2)

11
(3, 2)

Member of the Helmholtz Association August 12-16 2024 Slide 221

RANK TO COORDINATE [MPI-4.0, 8.5.5]
C int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

F0
8

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(in) :: rank, maxdims
integer, intent(out) :: coords(maxdims)
integer, optional, intent(out) :: ierror

Translates the rank of a process into its coordinate on the Cartesian grid.

Member of the Helmholtz Association August 12-16 2024 Slide 222

COORDINATE TO RANK [MPI-4.0, 8.5.5]
C int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

F0
8

MPI_Cart_rank(comm, coords, rank, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(in) :: coords(*)
integer, intent(out) :: rank
integer, optional, intent(out) :: ierror

Translates the coordinate on the Cartesian grid of a process into its rank.

Member of the Helmholtz Association August 12-16 2024 Slide 223

CARTESIAN SHIFT [MPI-4.0, 8.5.6]
C

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int
*rank_source, int *rank_dest)↪

F0
8

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierror)
type(MPI_Comm), intent(in) :: comm
integer, intent(in) :: direction, disp
integer, intent(out) :: rank_source, rank_dest
integer, optional, intent(out) :: ierror

Calculates the ranks of source and destination processes in a shift operation on a Cartesian grid
direction gives the number of the axis (starting at 0)
disp gives the displacement

Member of the Helmholtz Association August 12-16 2024 Slide 224

CARTESIAN SHIFT [MPI-4.0, 8.5.6]
Input:
direction = 0, disp = 1, not periodic
Output:
process 0:
rank_source = MPI_PROC_NULL,
rank_dest = 3
…
process 3:
rank_source = 0,
rank_dest = 6
…
process 9:
rank_source = 6,
rank_dest = MPI_PROC_NULL
…

0 3 6 9

1 4 7 10

2 5 8 11

Member of the Helmholtz Association August 12-16 2024 Slide 224

CARTESIAN SHIFT [MPI-4.0, 8.5.6]
Input:
direction = 0, disp = 1, periodic
Output:
process 0:
rank_source = 9,
rank_dest = 3
…
process 3:
rank_source = 0,
rank_dest = 6
…
process 9:
rank_source = 6,
rank_dest = 0
…

0 3 6 9

1 4 7 10

2 5 8 11

Member of the Helmholtz Association August 12-16 2024 Slide 224

CARTESIAN SHIFT [MPI-4.0, 8.5.6]
Input:
direction = 1, disp = 2, not periodic
Output:
process 0:
rank_source = MPI_PROC_NULL,
rank_dest = 2
process 1:
rank_source = MPI_PROC_NULL,
rank_dest = MPI_PROC_NULL
process 2:
rank_source = 0,
rank_dest = MPI_PROC_NULL
… 0 3 6 9

1 4 7 10

2 5 8 11

Member of the Helmholtz Association August 12-16 2024 Slide 224

NULL PROCESSES [MPI-4.0, 3.10]
C int MPI_PROC_NULL = /* implementation defined */

F0
8 integer, parameter :: MPI_PROC_NULL = ! implementation defined

Can be used as source or destination for point-to-point communication
Communication with MPI_PROC_NULL has no effect
May simplify code structure (communication with special source/destination instead of branch)
MPI_Cart_shift returns MPI_PROC_NULL for out of range shifts

Member of the Helmholtz Association August 12-16 2024 Slide 225

COMPARISON [MPI-4.0, 7.4.1]
C int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

F0
8

MPI_Comm_compare(comm1, comm2, result, ierror)
type(MPI_Comm), intent(in) :: comm1, comm2
integer, intent(out) :: result
integer, optional, intent(out) :: ierror

Compares two communicators. The result is one of:
MPI_IDENT The two communicators are the same.

MPI_CONGRUENT The two communicators consist of the same processes in the same order but communicate in
different contexts.

MPI_SIMILAR The two communicators consist of the same processes in a different order.
MPI_UNEQUAL Otherwise.

Member of the Helmholtz Association August 12-16 2024 Slide 226

FREE [MPI-4.0, 7.4.3]
C int MPI_Comm_free(MPI_Comm *comm)

F0
8

MPI_Comm_free(comm, ierror)
type(MPI_Comm), intent(inout) :: comm
integer, optional, intent(out) :: ierror

Marks a communicator for deallocation.

Member of the Helmholtz Association August 12-16 2024 Slide 227

