
Part I: Input/Output

Member of the Helmholtz Association

MOTIVATION
I/O on HPC Systems

“This is not your parents’ I/O subsystem”
File system is a shared resource

Modification of metadata might happen sequentially
File system blocks might be shared among processes

File system access might not be uniform across all processes
Interoperability of data originating on different platforms

MPI I/O
MPI already defines a language that describes data layout andmovement
Extend this language by I/O capabilities
More expressive/precise API than POSIX I/O affords better chances for optimization

Member of the Helmholtz Association August 12-16 2024 Slide 3

COMMON I/O STRATEGIES
Funnelled I/O

+ Simple to implement
- I/O bandwidth is limited to the rate of this single process
- Additional communication might be necessary
- Other processes may idle and waste resources during I/O operations

All or several processes use one file
+ Number of files is independent of number of processes
+ File is in canonical representation (no post-processing)
- Uncoordinated client requests might induce time penalties
- File layout may induce false sharing of file system blocks

Member of the Helmholtz Association August 12-16 2024 Slide 4

COMMON I/O STRATEGIES
Task-Local Files

+ Simple to implement
+ No explicit coordination between processes needed
+ No false sharing of file system blocks
- Number of files quickly becomes unmanageable
- Files often need to bemerged to create a canonical dataset (post-processing)
- File systemmight introduce implicit coordination (metadata modification)

Member of the Helmholtz Association August 12-16 2024 Slide 4

SEQUENTIAL ACCESS TOMETADATA

215 216 217 218 219 220 221101

102

103

24.8 26.9 34.7 73.8
240.6 410.2 777.8

Number of files

Ti
m
e(𝑠−1)
Juqueen, IBM Blue Gene/Q, GPFS, filesystem /work using fopen()

parallel creation of task-local files

Member of the Helmholtz Association August 12-16 2024 Slide 5

FILE, FILE POINTER & HANDLE [MPI-4.0, 14.1]
File
An MPI file is an ordered collection of typed data items.

File Pointer
A file pointer is an implicit offset into a file maintained by MPI.

File Handle
An opaque MPI object. All operations on an open file reference the file through the file handle.

Member of the Helmholtz Association August 12-16 2024 Slide 6

OPENING A FILE [MPI-4.0, 14.2.1]
C

int MPI_File_open(MPI_Comm comm, const char* filename, int amode, MPI_Info
info, MPI_File* fh)↪

F0
8

MPI_File_open(comm, filename, amode, info, fh, ierror)
type(MPI_Comm), intent(in) :: comm
character(len=*), intent(in) :: filename
integer, intent(in) :: amode
type(MPI_Info), intent(in) :: info
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

Collective operation on communicator comm
Filenamemust reference the same file on all processes
Process-local files can be opened using MPI_COMM_SELF
info object specifies additional information (MPI_INFO_NULL for empty)

Member of the Helmholtz Association August 12-16 2024 Slide 7

ACCESS MODE [MPI-4.0, 14.2.1]
amode denotes the access mode of the file andmust be the same on all processes. It must contain exactly one of the
following:
MPI_MODE_RDONLY read only access
MPI_MODE_RDWR read and write access
MPI_MODE_WRONLY write only access
andmay contain some of the following:
MPI_MODE_CREATE create the file if it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file is not opened elsewhere
MPI_MODE_SEQUENTIAL access to the file is sequential
MPI_MODE_APPEND file pointers are set to the end of the file
Combine using bit-wise or (| operator in C, ior intrinsic in Fortran).

Member of the Helmholtz Association August 12-16 2024 Slide 8

CLOSING A FILE [MPI-4.0, 14.2.2]
C int MPI_File_close(MPI_File* fh)

F0
8

MPI_File_close(fh, ierror)
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

Collective operation
User must ensure that all outstanding nonblocking and split collective operations associated with the file have
completed

Member of the Helmholtz Association August 12-16 2024 Slide 9

DELETING A FILE [MPI-4.0, 14.2.3]
C int MPI_File_delete(const char* filename, MPI_Info info)

F0
8

MPI_File_delete(filename, info, ierror)
character(len=*), intent(in) :: filename
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

Deletes the file identified by filename
If the file does not exist an error is raised
If the file is opened by any process

all further and outstanding access to the file is implementation dependent
it is implementation dependent whether the file is deleted; if it is not, an error is raised

Member of the Helmholtz Association August 12-16 2024 Slide 10

FILE PARAMETERS
Setting File Parameters

MPI_File_set_size Set the size of a file [MPI-4.0, 14.2.4]
MPI_File_preallocate Preallocate disk space [MPI-4.0, 14.2.5]

MPI_File_set_info Supply additional information [MPI-4.0, 14.2.8]

Inspecting File Parameters

MPI_File_get_size Size of a file [MPI-4.0, 14.2.6]
MPI_File_get_amode Acess mode [MPI-4.0, 14.2.7]
MPI_File_get_group Group of processes that opened the file [MPI-4.0, 14.2.7]
MPI_File_get_info Additional information associated with the file [MPI-4.0, 14.2.8]

Member of the Helmholtz Association August 12-16 2024 Slide 11

I/O ERROR HANDLING [MPI-4.0, 9.3, 14.7]
Communication, by default, aborts the programwhen an error is encountered. I/O operations, by default, return an
error code.

C int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

F0
8

MPI_File_set_errhandler(file, errhandler, ierror)
type(MPI_File), intent(in) :: file
type(MPI_Errhandler), intent(in) :: errhandler
integer, optional, intent(out) :: ierror

The default error handler for files is MPI_ERRORS_RETURN
Success is indicated by a return value of MPI_SUCCESS
MPI_ERRORS_ARE_FATAL aborts the program
Can be set for each file individually or for all files by using MPI_File_set_errhandler on a special file
handle, MPI_FILE_NULL

Member of the Helmholtz Association August 12-16 2024 Slide 12

QUIZ
What is the correct way to handle errors when using MPI I/O?

1 Setting the error handler of MPI_File objects to MPI_ERRORS_ARE_FATAL.
2 Checking the return value of every function against MPI_SUCCESS.
3 It depends...?

Member of the Helmholtz Association August 12-16 2024 Slide 13

FILE VIEW [MPI-4.0, 14.3]
File View
A file view determines what part of the contents of a file is visible to a process. It is defined by a displacement (given
in bytes) from the beginning of the file, an elementary datatype and a file type. The view into a file can be changed
multiple times between opening and closing.

File Types and Elementary Types are Data Types
Can be predefined or derived
The usual constructors can be used to create derived file types and elementary types, e.g.

MPI_Type_indexed,
MPI_Type_create_struct,
MPI_Type_create_subarray

Displacements in their typemapmust be non-negative andmonotonically nondecreasing
Have to be committed before use

Member of the Helmholtz Association August 12-16 2024 Slide 14

DEFAULT FILE VIEW [MPI-4.0, 14.3]
When newly opened, files are assigned a default view that is the same on all processes:

Zero displacement
File contains a contiguous sequence of bytes
All processes have access to the entire file

File 0: byte 1: byte 2: byte 3: byte ...

Process 0 0: byte 1: byte 2: byte 3: byte ...

Process 1 0: byte 1: byte 2: byte 3: byte ...

... 0: byte 1: byte 2: byte 3: byte ...

Member of the Helmholtz Association August 12-16 2024 Slide 15

ELEMENTARY TYPE [MPI-4.0, 14.3]
Elementary Type
An elementary type (or etype) is the unit of data contained in a file. Offsets are expressed in multiples of etypes, file
pointers point to the beginning of etypes. Etypes can be basic or derived.

Changing the Elementary Type
E.g. etype = MPI_INT:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int 2: int 3: int ...

Process 1 0: int 1: int 2: int 3: int ...

... 0: int 1: int 2: int 3: int ...

Member of the Helmholtz Association August 12-16 2024 Slide 16

FILE TYPE [MPI-4.0, 14.3]
File Type
A file type describes an access pattern. It can contain either instances of the etype or holes with an extent that is
divisible by the extent of the etype.

Changing the File Type

E.g. Filetype0 = {(int, 0), (hole, 4), (hole, 8)}, Filetype1 = {(hole, 0), (int, 4), (hole, 8)}, …:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int ...

Process 1 0: int ...

... 0: int ...

Member of the Helmholtz Association August 12-16 2024 Slide 17

CHANGING THE FILE VIEW [MPI-4.0, 14.3]
C

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, const char* datarep, MPI_Info info)↪

F0
8

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: disp
type(MPI_Datatype), intent(in) :: etype, filetype
character(len=*), intent(in) :: datarep
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

Collective operation
datarep and extent of etypemust be identical across all process
disp, filetype and info can be distinct
File pointers are reset to zero
May not overlap with nonblocking or split collective operations

Member of the Helmholtz Association August 12-16 2024 Slide 18

DATA REPRESENTATION [MPI-4.0, 14.5]
Determines the conversion of data in memory to data on disk
Influences the interoperability of I/O between heterogeneous parts of a system or different systems

"native"
Data is stored in the file exactly as it is in memory

+ No loss of precision
+ No overhead
- On heterogeneous systems loss of transparent interoperability

Member of the Helmholtz Association August 12-16 2024 Slide 19

DATA REPRESENTATION [MPI-4.0, 14.5]
"internal"
Data is stored in implementation-specific format

+ Can be used in a homogeneous and heterogeneous environment
+ Implementation will perform conversions if necessary
- Can incur overhead
- Not necessarily compatible between different implementations

"external32"
Data is stored in standardized data representation (big-endian IEEE)

+ Can be read/written also by non-MPI programs
- Precision and I/O performance may be lost due to type conversions between native and external32
representations

- Not available in all implementations

Member of the Helmholtz Association August 12-16 2024 Slide 19

DATA ACCESS
Three orthogonal aspects

1 Synchronism
1 Blocking
2 Nonblocking
3 Split collective

2 Coordination
1 Noncollective
2 Collective

3 Positioning
1 Explicit offsets
2 Individual file pointers
3 Shared file pointers

POSIX read() and write()
These are blocking, noncollective operations with
individual file pointers.

Member of the Helmholtz Association August 12-16 2024 Slide 20

SYNCHRONISM
Blocking I/O

Blocking I/O routines do not return before the operation is completed.

Nonblocking I/O

Nonblocking I/O routines do not wait for the operation to finish
A separate completion routine is necessary [MPI-4.0, 3.7.3, 3.7.5]
The associated buffers must not be used while the operation is in flight

Split Collective
“Restricted” form of nonblocking collective
Buffers must not be used while in flight
Does not allow other collective accesses to the file while in flight
begin and endmust be used from the same thread

Member of the Helmholtz Association August 12-16 2024 Slide 21

COORDINATION
Noncollective
The completion depends only on the activity of the calling process.

Collective
Completion may depend on activity of other processes
Opens opportunities for optimization

Member of the Helmholtz Association August 12-16 2024 Slide 22

POSITIONING [MPI-4.0, 14.4.1 – 14.4.4]
Explicit Offset

No file pointer is used
File position for access is given directly as function argument

Individual File Pointers
Each process has its own file pointer
After access, pointer is moved to first etype after the last one accessed

Shared File Pointers
All processes share a single file pointer
All processes must use the same file view
Individual accesses appear as if serialized (with an unspecified order)
Collective accesses are performed in order of ascending rank

Member of the Helmholtz Association August 12-16 2024 Slide 23

Combine the prefix MPI_File_with any of the following suffixes:

coordination

positioning synchronism noncollective collective

explicit offsets
blocking read_at, write_at read_at_all, write_at_all

nonblocking iread_at, iwrite_at iread_at_all, iwrite_at_all

split collective N/A read_at_all_begin,
read_at_all_end,
write_at_all_begin,
write_at_all_end

individual file
pointers

blocking read, write read_all, write_all

nonblocking iread, iwrite iread_all, iwrite_all

split collective N/A read_all_begin, read_all_end,
write_all_begin, write_all_end

shared file pointers
blocking read_shared, write_shared read_ordered, write_ordered

nonblocking iread_shared, iwrite_shared N/A

split collective N/A read_ordered_begin,
read_ordered_end,
write_ordered_begin,
write_ordered_end

WRITING
blocking, noncollective, explicit offset [MPI-4.0, 14.4.2]

C

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void* buf, int
count, MPI_Datatype datatype, MPI_Status *status)↪

F0
8

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

Starting offset for access is explicitly given
No file pointer is updated
Writes count elements of datatype frommemory starting at buf
Typesig datatype = Typesig etype … Typesig etype
Writing past end of file increases the file size

Member of the Helmholtz Association August 12-16 2024 Slide 25

EXAMPLE
blocking, noncollective, explicit offset [MPI-4.0, 14.4.2]

Process 0 calls MPI_File_write_at(offset = 1, count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association August 12-16 2024 Slide 26

WRITING
blocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_write(MPI_File fh, const void* buf, int count, MPI_Datatype
datatype, MPI_Status* status)↪

F0
8

MPI_File_write(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Starts writing at the current position of the individual file pointer
Moves the individual file pointer by the count of etypes written

Member of the Helmholtz Association August 12-16 2024 Slide 27

EXAMPLE
blocking, noncollective, individual [MPI-4.0, 14.4.3]

With its file pointer at element 1, process 1 calls MPI_File_write(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association August 12-16 2024 Slide 28

WRITING
nonblocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_iwrite(MPI_File fh, const void* buf, int count, MPI_Datatype
datatype, MPI_Request* request)↪

F0
8

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Starts the same operation as MPI_File_write but does not wait for completion
Returns a request object that is used to complete the operation

Member of the Helmholtz Association August 12-16 2024 Slide 29

WRITING
blocking, collective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_write_all(MPI_File fh, const void* buf, int count,
MPI_Datatype datatype, MPI_Status* status)↪

F0
8

MPI_File_write_all(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Same signature as MPI_File_write, but collective coordination
Each process uses its individual file pointer
MPI can use communication between processes to funnel I/O

Member of the Helmholtz Association August 12-16 2024 Slide 30

EXAMPLE
blocking, collective, individual [MPI-4.0, 14.4.3]

With its file pointer at element 1, process 0 calls MPI_File_write_all(count = 1),
With its file pointer at element 0, process 1 calls MPI_File_write_all(count = 2),
With its file pointer at element 2, process 2 calls MPI_File_write_all(count = 0):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association August 12-16 2024 Slide 31

WRITING
split-collective, individual [MPI-4.0, 14.4.5]

C

int MPI_File_write_all_begin(MPI_File fh, const void* buf, int count,
MPI_Datatype datatype)↪

F0
8

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

Same operation as MPI_File_write_all, but split-collective
status is returned by the corresponding end routine

Member of the Helmholtz Association August 12-16 2024 Slide 32

WRITING
split-collective, individual [MPI-4.0, 14.4.5]

C

int MPI_File_write_all_end(MPI_File fh, const void* buf, MPI_Status*
status)↪

F0
8

MPI_File_write_all_end(fh, buf, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

buf argument must match corresponding begin routine

Member of the Helmholtz Association August 12-16 2024 Slide 33

EXAMPLE
blocking, noncollective, shared [MPI-4.0, 14.4.4]

All process must share the same file view for shared file pointer data accesses!

With the shared pointer at element 2,
process 0 calls MPI_File_write_shared(count = 3),
process 2 calls MPI_File_write_shared(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...
Member of the Helmholtz Association August 12-16 2024 Slide 34

EXAMPLE
blocking, noncollective, shared [MPI-4.0, 14.4.4]

All process must share the same file view for shared file pointer data accesses!

With the shared pointer at element 2,
process 0 calls MPI_File_write_shared(count = 3),
process 2 calls MPI_File_write_shared(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...
Member of the Helmholtz Association August 12-16 2024 Slide 34

EXAMPLE
blocking, collective, shared [MPI-4.0, 14.4.4]

With the shared pointer at element 2,
process 0 calls MPI_File_write_ordered(count = 1),
process 1 calls MPI_File_write_ordered(count = 2),
process 2 calls MPI_File_write_ordered(count = 3):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

READING
blocking, noncollective, individual [MPI-4.0, 14.4.3]

C

int MPI_File_read(MPI_File fh, void* buf, int count, MPI_Datatype datatype,
MPI_Status* status)↪

F0
8

MPI_File_read(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Starts reading at the current position of the individual file pointer
Reads up to count elements of datatype into the memory starting at buf
status indicates howmany elements have been read
If status indicates less than count elements read, the end of file has been reached

Member of the Helmholtz Association August 12-16 2024 Slide 36

FILE POINTER POSITION [MPI-4.0, 14.4.3]
C int MPI_File_get_position(MPI_File fh, MPI_Offset* offset)

F0
8

MPI_File_get_position(fh, offset, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(out) :: offset
integer, optional, intent(out) :: ierror

Returns the current position of the individual file pointer in units of etype
Value can be used for e.g.

return to this position (via seek)
calculate a displacement

MPI_File_get_position_shared queries the position of the shared file pointer

Member of the Helmholtz Association August 12-16 2024 Slide 37

SEEKING TO A FILE POSITION [MPI-4.0, 14.4.3]
C int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

F0
8

MPI_File_seek(fh, offset, whence, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer, intent(in) :: whence
integer, optional, intent(out) :: ierror

whence controls how the file pointer is moved:
MPI_SEEK_SET sets the file pointer to offset
MPI_SEEK_CUR offset is relative to the current value of the pointer
MPI_SEEK_END offset is relative to the end of the file
offset can be negative but the resulting position may not lie before the beginning of the file
MPI_File_seek_sharedmanipulates the shared file pointer

Member of the Helmholtz Association August 12-16 2024 Slide 38

EXAMPLE
Process 0 calls MPI_File_seek(offset = 2, whence = MPI_SEEK_SET):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

Member of the Helmholtz Association August 12-16 2024 Slide 39

EXAMPLE
Process 1 calls MPI_File_seek(offset = -1, whence = MPI_SEEK_CUR):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

Member of the Helmholtz Association August 12-16 2024 Slide 39

EXAMPLE
Process 2 calls MPI_File_seek(offset = -1, whence = MPI_SEEK_END):

File 0 1 2 3 4 5 6 7 8 9

Process 0 0 1 2 3

Process 1 0 1 2

Process 2 0 1 2

Member of the Helmholtz Association August 12-16 2024 Slide 39

CONVERTING OFFSETS [MPI-4.0, 14.4.3]
C

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset*
disp)↪

F0
8

MPI_File_get_byte_offset(fh, offset, disp, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer(kind=MPI_OFFSET_KIND), intent(out) :: disp
integer, optional, intent(out) :: ierror

Converts a view relative offset (in units of etype) into a displacement in bytes from the beginning of the file

Member of the Helmholtz Association August 12-16 2024 Slide 40

CONSISTENCY [MPI-4.0, 14.6.1]
Sequential Consistency
If a set of operations is sequentially consistent, they behave as if executed in some serial order. The exact order is
unspecified.

To guarantee sequential consistency, certain requirements must be met
Requirements depend on access path and file atomicity

Result of operations that are not sequentially consistent is implementation dependent.

Member of the Helmholtz Association August 12-16 2024 Slide 41

ATOMIC MODE [MPI-4.0, 14.6.1]
Requirements for sequential consistency
Same file handle: always sequentially consistent
File handles from same open: always sequentially consistent
File handles from different open: not influenced by atomicity, see nonatomic mode

Atomic mode is not the default setting
Can lead to overhead, because MPI library has to uphold guarantees in general case

C int MPI_File_set_atomicity(MPI_File fh, int flag)

F0
8

MPI_File_set_atomicity(fh, flag, ierror)
type(MPI_File), intent(in) :: fh
logical, intent(in) :: flag
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 42

NONATOMIC MODE [MPI-4.0, 14.6.1]
Requirements for sequential consistency
Same file handle: operations must be either nonconcurrent, nonconflicting, or both
File handles from same open: nonconflicting accesses are sequentially consistent, conflicting accesses have to be
protected using MPI_File_sync
File handles from different open: all accesses must be protected using MPI_File_sync

Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one is writing.

C int MPI_File_sync(MPI_File fh)

F0
8

MPI_File_sync(fh, ierror)
type(MPI_File), intent(in) :: fh
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 43

NONATOMIC MODE [MPI-4.0, 14.6.1]
The Sync-Barrier-Sync construct

C

// writing access sequence through
one file handle↪

MPI_File_sync(fh0);
MPI_Barrier(MPI_COMM_WORLD);
MPI_File_sync(fh0);
// ...

C

// ...
MPI_File_sync(fh1);
MPI_Barrier(MPI_COMM_WORLD);
MPI_File_sync(fh1);
// access sequence to the same

file through a different file
handle

↪
↪

MPI_File_sync is used to delimit sequences of accesses through different file handles
Sequences that contain a write access may not be concurrent with any other access sequence

Member of the Helmholtz Association August 12-16 2024 Slide 43

LARGE COUNT EXAMPLE
C

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void* buf, int count,
MPI_Datatype datatype, MPI_Status* status)↪

int MPI_File_read_at_c(MPI_File fh, MPI_Offset offset, void* buf, MPI_Count
count, MPI_Datatype datatype, MPI_Status* status)↪

Member of the Helmholtz Association August 12-16 2024 Slide 44

LARGE COUNT EXAMPLE
F0
8

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(in) :: offset
type(*), dimension(..) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 44

LARGE COUNT EXAMPLE
F0
8

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
integer(KIND=MPI_OFFSET_KIND), intent(in) :: offset
type(*), dimension(..) :: buf
integer(KIND=MPI_COUNT_KIND), intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 44

EXERCISES
Ex
er
ci
se

1–
Da

ta
Ac
ce
ss

1.1 Writing Data

In the file rank_io.{c|cxx|f90|py}write a function write_rank that takes a communicator as its
only argument and does the following:

Each process writes its own rank in the communicator to a common file rank.dat using "native"
data representation.
The ranks should be in order in the file: 0 … 𝑛 − 1.

Use: MPI_File_open, MPI_File_set_errhandler, MPI_File_set_view,
MPI_File_write_ordered, MPI_File_close

Member of the Helmholtz Association August 12-16 2024 Slide 45

EXERCISES
Ex
er
ci
se

1–
Da

ta
Ac
ce
ss

1.2 Reading Data

In the file rank_io.{c|cxx|f90|py}write a function read_rank that takes a communicator as its only
argument and does the following:

The processes read the integers in the file in reverse order, i.e. process 0 reads the last entry, process 1
reads the one before, etc.
Each process returns the rank number it has read from the function.

Careful: This function might be run on a communicator with a different number of processes. If there are more
processes than entries in the file, processes with ranks larger than or equal to the number of file entries should
return MPI_PROC_NULL.
Use: MPI_File_seek, MPI_File_get_position, MPI_File_read

Member of the Helmholtz Association August 12-16 2024 Slide 46

EXERCISES
Ex
er
ci
se

1–
Da

ta
Ac
ce
ss

1.3 Phone Book
The file phonebook.dat contains several records of the following form:

C

struct dbentry {
int key;
int room_number;
int phone_number;
char name[200];

} F0
8

type :: dbentry
integer :: key
integer :: room_number
integer :: phone_number
character(len=200) :: name

end type
In the file phonebook.{c|cxx|f90|py}write a function look_up_by_room_number that uses MPI
I/O to find an entry by room number. Assume the file was written using "native" data representation. Use
MPI_COMM_SELF to open the file. Return a bool or logical to indicate whether an entry has been found
and fill an entry via pointer/intent out argument.

Member of the Helmholtz Association August 12-16 2024 Slide 47

	Input/Output
	Introduction
	File Manipulation
	File Views
	Data Access
	Consistency
	Large Numbers
	Exercises

