
MPI/OPENMP COURSE – SCORE-P

AUGUST 16, 2024 I MICHAEL KNOBLOCH I M.KNOBLOCH@FZ-JUELICH.DE

PERFORMANCE ANALYSIS

USING THE SCORE-P ECOSYSTEM

MOTIVATION

■ Writing parallel code is hard

■ Writing fast/efficient parallel code is even harder

■ “Parallel” (multi core/node) performance factors

■ Partitioning / decomposition

 Load balancing

■ Communication (i.e., message passing)

■ Multithreading

■ Core binding / NUMA

■ Synchronization / locking

■ I/O

Parallel I/O matters

TUNING BASICS

■ Carefully set various tuning parameters

■ The right (parallel) algorithms and libraries

■ Compiler flags and directives

■ Correct machine usage (mapping and bindings)

Get the most performance before tuning!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

After each step!

PERFORMANCE ENGINEERING WORKFLOW

■ Prepare application (with symbols),

insert extra code (probes/hooks)

■ Collection of data relevant to

execution performance analysis

■ Calculation of metrics, identification

of performance metrics

■ Presentation of results in an intuitive/understandable form

■ Modifications intended to eliminate/reduce performance

problems

Preparation

Measurement

Analysis

Examination

Optimization

THE 80/20 RULE

■ Programs typically spend 80% of their time in 20% of

the code

Know what matters!

■ Developers typically spend 20% of their effort to get

80% of the total speedup possible for the application

Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

PERFORMANCE MEASUREMENT

Two dimensions

When performance measurement is triggered

• External trigger (asynchronous)

• Sampling

• Trigger: Timer interrupt OR

Hardware counters overflow

• Internal trigger (synchronous)

• Code instrumentation

(automatic or manual)

How performance data is recorded

• Profile

• Summation of events over time

• Trace

• Sequence of events over time

• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

http://www.score-p.org/

TOOL ECOSYSTEM

Scalasca
parallel trace

analysis

CUBE4
report

CUBE4
report

Instrumented

target

application

Score-P

PAPI
OTF2
traces

TAU

ParaProf

CUBE

TAU
PerfExplorer

Vampir

Remote Guidance

Extra-P

ARCHITECTURE

Application

Vampir Scalasca TAU

Accelerator-based

parallelism

(CUDA, OpenACC,

ROCm, OpenCL, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles

(CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

FUNCTIONALITY

• Provide typical functionality for HPC performance tools

• Instrumentation (various methods)

• Multi-process paradigms (MPI, SHMEM)

• Thread-parallel paradigms (OpenMP, POSIX threads)

• Accelerator-based paradigms (OpenACC, CUDA, OpenCL. Kokkos)

• In any combination!

• Flexible measurement without re-compilation:

• Basic and advanced profile generation (CUBE4 format)

• Event trace recording (OTF2 format)

• Highly scalable I/O functionality

• Support all fundamental concepts of partner’s tools

CUBE EXAMPLE

Distribution of selected

metric across call tree

When expanding, value

changes from inclusive to

exclusive

Selection updates columns

to the right

Box plot view shows

distribution across

processes/threads

SCORE-P: ADVANCED FEATURES

• Measurement can be extensively configured via

environment variables

• Allows for targeted measurements:

• Selective recording

• Phase profiling

• Parameter-based profiling

• …

• GPU support: CUDA, OpenACC, OpenCL, HIP, Kokkos, …

• Please ask us or see the user manual for details

SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/

AUTOMATIC TRACE ANALYSIS

• Automatic search for patterns of inefficient behaviour

• Classification of behaviour & quantification of significance

• Identification of delays as root causes of inefficiencies

• Guaranteed to cover the entire event trace

• Quicker than manual/visual trace analysis

• Parallel replay analysis exploits available memory & processors to deliver scalability

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

EXAMPLE MPI WAIT STATES

time

p
ro

c
e

s
s

(a) Late Sender
time

p
ro

c
e

s
s

(b) Late Receiver

time

p
ro

c
e

s
s

(d) Wait at N x N
time

p
ro

c
e

s
s

(c) Late Sender / Wrong Order

ENTER EXIT SEND RECV COLLEXIT

SCALASCA ROOT CAUSE ANALYSIS
• Root-cause analysis

• Wait states typically caused by load or

communication imbalances earlier in

the program

• Waiting time can also propagate (e.g.,

indirect waiting time)

• Enhanced performance analysis to find

the root cause of wait states

• Approach

• Distinguish between direct and

indirect waiting time

• Identify call path/process

combinations delaying other

processes and causing first order

waiting time

• Identify original delay

time

Recv

Send

Send

foo

foo

foo

bar

bar Recv

A

B

C

cause

Recv

Recv

Direct waitIndirect wait

Recv

barDELAY

SCALASCA TRACE ANALYSIS EXAMPLE

Additional wait-state metrics

from the trace analysis

Delay / root-cause metrics

Critical-path profile

VAMPIR EVENT TRACE VISUALIZER

• Offline trace visualization for Score-Ps OTF2 trace files

• Visualization of MPI, OpenMP and application events:

• All diagrams highly customizable (through context menus)

• Large variety of displays for ANY part of the trace

• http://www.vampir.eu

• Advantage:

• Detailed view of dynamic application behavior

• Disadvantage:

• Completely manual analysis

• Too many details can hide the relevant parts

EVENT TRACE VISUALIZATION WITH VAMPIR

20

• Visualization of dynamic runtime behaviour at any level of

detail along with statistics and performance metrics

• Alternative and supplement to automatic analysis

• Typical questions that Vampir helps to answer

• What happens in my application execution during a

given time in a given process or thread?

• How do the communication patterns of my application

execute on a real system?

• Are there any imbalances in computation, I/O or

memory usage and how do they affect the parallel

execution of my application?

 Timeline charts

 Application activities and

communication along a time axis

 Summary charts

 Quantitative results for the currently

selected time interval

VAMPIR PERFORMANCE CHARTS

21

Timeline Charts

Master Timeline all threads’ activities

Process Timeline single thread’s activities

Summary Timeline all threads’ function call statistics

Performance Radar all threads’ performance metrics

Counter Data Timeline single threads’ performance metrics

I/O Timeline all threads’ I/O activities

Summary Charts

Function Summary

Message Summary

I/O Summary

Process Summary

Communication Matrix View

Call Tree

VAMPIR DISPLAYS

TOOLS DEMO: BT-MZ WITH SCORE-P

TYPICAL PERFORMANCE ANALYSIS PROCEDURE

■ Do I have a performance problem at all?

■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?

■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?

■ Call-path profiling, detailed basic block profiling

■ Why is it there?

■ Hardware counter analysis

■ Trace selected parts (to keep trace size manageable)

■ Does the code have scalability problems?

■ Load imbalance analysis, compare profiles at various

sizes function-by-function, performance modeling

WHAT IS THE KEY BOTTLENECK?

• Generate flat MPI profile using Score-P/Scalasca

• Only requires re-linking

• Low runtime overhead

• Provides detailed information on MPI usage

• How much time is spent in which operation?

• How often is each operation called?

• How much data was transferred?

• Limitations:

• Computation on non-master threads and outside

of MPI_Init/MPI_Finalize scope ignored

FLAT MPI PROFILE: RECIPE

1. Prefix your link command with

“scorep --nocompiler”

2. Prefix your MPI launch command with

“scalasca -analyze”

3. After execution, examine analysis results using

“scalasca -examine scorep_<title>”

FLAT MPI PROFILE: EXAMPLE (CONT.)

Aggregate execution

time on master threads

Time spent in a

particular MPI call

Time spent in selected

call as percentage of

total time

WHERE IS THE KEY BOTTLENECK?

• Generate call-path profile using Score-P/Scalasca

• Requires re-compilation

• Runtime overhead depends on application characteristics

• Typically needs some care setting up a good measurement configuration

• Filtering

• Selective instrumentation

• Option 1 (recommended for beginners):

Automatic compiler-based instrumentation

• Option 2 (for in-depth analysis):

Manual instrumentation of interesting phases, routines, loops

CALL-PATH PROFILE: RECIPE

1. Prefix your compile & link commands with

“scorep”

2. Prefix your MPI launch command with

“scalasca -analyze”

3. After execution, compare overall runtime with uninstrumented

run to determine overhead

4. If overhead is too high

1. Score measurement using

“scalasca -examine -s scorep_<title>”

2. Prepare filter file

3. Re-run measurement with filter applied using prefix

“scalasca –analyze –f <filter_file>”

5. After execution, examine analysis results using

“scalasca -examine scorep_<title>”

CALL-PATH PROFILE: EXAMPLE (CONT.)

• Estimates trace buffer requirements

• Allows to identify candidate functions for filtering

Computational routines with high visit count

and low time-per-visit ratio

• Region/call-path classification

• MPI (pure MPI library functions)

• OMP (pure OpenMP functions/regions)

• USR (user-level source local computation

• COM (“combined” USR + OpeMP/MPI)

• ANY/ALL (aggregate of all region types)

% scalasca -examine -s scorep_myprog_Ppnxt_sum
scorep-score -r ./scorep_myprog_Ppnxt_sum/profile.cubex
INFO: Score report written to ./scorep_myprog_Ppnxt_sum/scorep.score

USR

USR

COM

COM USR

USR MPIOMP

CALL-PATH PROFILE: EXAMPLE (CONT.)

% less scorep_myprog_Ppnxt_sum/scorep.score
Estimated aggregate size of event trace: 162GB
Estimated requirements for largest trace buffer (max_buf): 2758MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 2822MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=2822MB to avoid
intermediate flushes or reduce requirements using USR regions
filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

ALL 2,891,417,902 6,662,521,083 36581.51 100.0 5.49 ALL
USR 2,858,189,854 6,574,882,113 13618.14 37.2 2.07 USR
OMP 54,327,600 86,353,920 22719.78 62.1 263.10 OMP
MPI 676,342 550,010 208.98 0.6 379.96 MPI
COM 371,930 735,040 34.61 0.1 47.09 COM

USR 921,918,660 2,110,313,472 3290.11 9.0 1.56 matmul_sub
USR 921,918,660 2,110,313,472 5914.98 16.2 2.80 binvcrhs
USR 921,918,660 2,110,313,472 3822.64 10.4 1.81 matvec_sub
USR 41,071,134 87,475,200 358.56 1.0 4.10 lhsinit
USR 41,071,134 87,475,200 145.42 0.4 1.66 binvrhs
USR 29,194,256 68,892,672 86.15 0.2 1.25 exact_solution
OMP 3,280,320 3,293,184 15.81 0.0 4.80 !$omp parallel
[...]

CALL-PATH PROFILE: FILTERING

• In this example, the 6 most fequently called routines are

of type USR

• These routines contribute around 35% of total time

• However, much of that is most likely measurement overhead

• Frequently executed

• Time-per-visit ratio in the order of a few microseconds

Avoid measurements to reduce the overhead

List routines to be filtered in simple text file

FILTERING: EXAMPLE

• Score-P filtering files support

• Wildcards (shell globs)

• Blacklisting

• Whitelisting

• Filtering based on filenames

% cat filter.txt
SCOREP_REGION_NAMES_BEGIN

EXCLUDE
binvcrhs
matmul_sub
matvec_sub
binvrhs
lhsinit
exact_solution

SCOREP_REGION_NAMES_END

CALL-PATH PROFILE: EXAMPLE (CONT.)

CALL-PATH PROFILE: EXAMPLE (CONT.)

Distribution of selected

metric across call tree

When expanding, value

changes from inclusive to

exclusive

Selection updates columns

to the right

Box plot view shows

distribution across

processes/threads

CALL-PATH PROFILE: EXAMPLE (CONT.)

Split base metrics into

more specific metrics

WHY IS THE BOTTLENECK THERE?

• This is highly application dependent!

• Might require additional measurements

• Hardware-counter analysis

• CPU utilization

• Cache behavior

• Selective instrumentation

• Automatic/manual event trace analysis

HARDWARE COUNTERS

• Counters: set of registers that count processor events, e.g. floating point operations or cycles

• Number of registers, counters and simultaneously measurable events vary between platforms

• Can be measured by:

• perf:

• Integrated in Linux since Kernel 2.6.31

• Library and CLI

• LIKWID:

• Direct access to MSRs (requires Kernel module)

• Consists of multiple tools and an API

• PAPI (Performance API)

PAPI

• Portable API: Uses the same routines to access counters across all supported architectures

• Used by most performance analysis tools

• High-level interface:

• Predefined standard events, e.g. PAPI_FP_OPS

• Availability and definition of events varies between platforms

• List of available counters: papi_avail (-d)

• Low-level interface:

• Provides access to all machine specific counters

• Non-portable

• More flexible

• List of available counters: papi_native_avail

TRACE GENERATION & ANALYSIS W/ SCALASCA

• Enable trace collection & analysis using “-t” option of “scalasca -analyze”:

• ATTENTION:

• Traces can quickly become extremely large!

• Remember to use proper filtering, selective instrumentation, and Score-P memory specification

• Before flooding the file system, ask us for assistance!

##########################
In the job script:
##########################

module load ENV Score-P Scalasca
export SCOREP_TOTAL_MEMORY=120MB # Consult score report
scalasca -analyze -f filter.txt -t \

srun -n n [...] ./myprog

SCALASCA TRACE ANALYSIS EXAMPLE

Additional wait-state metrics

from the trace analysis

Delay / root-cause metrics

Critical-path profile

QUESTIONS

