
Part X: Collective Communication

Member of the Helmholtz Association

COLLECTIVE COMMUNICATION [MPI-4.0, 2.4, 6.1]
Collective
A procedure is collective if all processes in a group need to invoke the procedure.

Collective communication implements certain communication patterns that involve all processes in a group
Synchronization may or may not occur (except for MPI_Barrier)
No tags are used
No MPI_Status values are returned
Receive buffer size must match the total amount of data sent (c.f. point-to-point communication where receive
buffer capacity is allowed to exceed the message size)
Point-to-point and collective communication do not interfere

Member of the Helmholtz Association August 12-16 2024 Slide 184

CLASSIFICATION [MPI-4.0, 6.2.2]
One-to-all
MPI_Bcast, MPI_Scatter, MPI_Scatterv

All-to-one
MPI_Gather, MPI_Gatherv, MPI_Reduce

All-to-all
MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv, MPI_Alltoallw,
MPI_Allreduce, MPI_Reduce_scatter, MPI_Barrier

Other
MPI_Scan, MPI_Exscan

Member of the Helmholtz Association August 12-16 2024 Slide 185

REFERENCES
MPI standard documentation:
https://www.mpi-forum.org/docs/

mpich guidebook:
https://www.mpich.org/static/docs/v3.3/

MPI for Python - mpi4py:
https://mpi4py.readthedocs.io/en/stable/

Member of the Helmholtz Association August 12-16 2024 Slide 186

https://www.mpi-forum.org/docs/
https://www.mpich.org/static/docs/v3.3/
https://mpi4py.readthedocs.io/en/stable/

BROADCAST [MPI-4.0, 6.4]
C

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)↪

be
fo
re

aft
er

𝜋

𝜋 𝜋 𝜋 𝜋

Member of the Helmholtz Association August 12-16 2024 Slide 187

SCATTER [MPI-4.0, 6.6]
C

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm
comm)

↪

↪

be
fo
re

aft
er

A B C D

A B C D

B
A C D

Member of the Helmholtz Association August 12-16 2024 Slide 188

GATHER [MPI-4.0, 6.5]
C

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm
comm)

↪

↪

be
fo
re

aft
er

B
A C D

B

A B C D
A C D

Member of the Helmholtz Association August 12-16 2024 Slide 189

ALLGATHER [MPI-4.0, 6.7]
C

int MPI_Allgather(const void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm
comm)

↪

↪

be
fo
re

aft
er

A B C D

A

A B C D

B

A B C D

C

A B C D

D

A B C D

Member of the Helmholtz Association August 12-16 2024 Slide 190

ALL-TO-ALL SCATTER/GATHER [MPI-4.0, 6.8]
C

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)↪

be
fo
re

aft
er

A B C D E F G H I J K L M N O P

A B C D

A E I M

E F G H

B F J N

I J K L

C G K O

M N O P

D H L P

Member of the Helmholtz Association August 12-16 2024 Slide 191

MESSAGE ASSEMBLY
Single Message Size

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 0 1 2 3

Message 4 5 6 7

Buffer 0 1 2 3 ? ? ? ? ? ? ...

Buffer 4 5 6 7 ? ? ? ? ? ? ...

MPI_Scatter(sendbuffer, 4, MPI_INT, ...)

MPI_Scatter(..., receivebuffer, 4, MPI_INT, ...)

Member of the Helmholtz Association August 12-16 2024 Slide 192

DATAMOVEMENT VARIANTS [MPI-4.0, 6.5 – 6.8]
Routines with variable counts (and datatypes):

MPI_Scatterv: scatter into parts of variable length
MPI_Gatherv: gather parts of variable length
MPI_Allgatherv: gather parts of variable length onto all processes
MPI_Alltoallv: exchange parts of variable length between all processes
MPI_Alltoallw: exchange parts of variable length and datatype between all processes

Member of the Helmholtz Association August 12-16 2024 Slide 193

DATAMOVEMENT SIGNATURES
Varying Message Size

C

int MPI_Scatterv(const void *sendbuf, const int *sendcounts, const int
*displs, MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

↪

↪

Same high-level pattern as before.

In addition to send/recvbuffer following is specified:
send/recvcounts array of length: number of MPI tasks that holds an individual count of number of
message elements to be send
send/recvdispls array of length: number of MPI tasks that holds the displacements (in units of
message elements) from the beginning of the buffer at which to start taking elements

Note: Overlapping blocks
The blocks for different messages in send buffers can overlap. In receive buffers, they must not.

Member of the Helmholtz Association August 12-16 2024 Slide 194

MESSAGE ASSEMBLY
Varying Message Size

Buffer 0 1 2 3 4 5 6 7 8 9 ...

Message 1 2 3

Message 5 6

Buffer 1 2 3 ? ? ? ? ? ? ? ...

Buffer 5 6 ? ? ? ? ? ? ? ? ...

MPI_Scatterv(sendbuffer, { 3, 2 }, { 1, 5 }, MPI_INT, ...)

MPI_Scatterv(..., receivebuffer, (3 | 2), MPI_INT, ...)

Member of the Helmholtz Association August 12-16 2024 Slide 195

GLOBAL REDUCTION OPERATIONS [MPI-4.0, 6.9]
Associative operations over distributed data

𝑑0 ⊕ 𝑑1 ⊕ 𝑑2 ⊕ … ⊕ 𝑑𝑛−1,where
𝑑𝑖, data of process with rank 𝑖
⊕, associative operation

Examples for ⊕:
Sum + and product ×
Maximummax andminimummin

User-defined operations

Note: Order of application is not defined, watch out for floating point rounding.

Member of the Helmholtz Association August 12-16 2024 Slide 197

REDUCE [MPI-4.0, 6.9.1]
Explanation

be
fo
re

aft
er

1 2 3 4 5 6
7 8 9

10 11 12

1 2 3 4 5 6
7 8 9

22 26 30
10 11 12

+ + +

Member of the Helmholtz Association August 12-16 2024 Slide 198

REDUCE [MPI-4.0, 6.9.1]
Signature

C

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_Comm comm)↪

F0
8

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
type(*), dimension(..), intent(in) :: sendbuf
type(*), dimension(..) :: recvbuf
integer, intent(in) :: count, root
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Op), intent(in) :: op
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 198

EXCLUSIVE SCAN [MPI-4.0, 6.11.2]
Explanation

be
fo
re

aft
er

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

1 2 3

7 8 9

5 7 9

10 11 12

12 15 18

+ + +

Member of the Helmholtz Association August 12-16 2024 Slide 199

EXCLUSIVE SCAN [MPI-4.0, 6.11.2]
Signature

C

int MPI_Exscan(const void* sendbuf, void* recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, MPI_Comm comm)↪

F0
8

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
type(*), dimension(..), intent(in) :: sendbuf
type(*), dimension(..) :: recvbuf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Op), intent(in) :: op
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 199

PREDEFINED OPERATIONS [MPI-4.0, 6.9.2]
Name Meaning

MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bitwise and
MPI_LOR Logical or
MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and the first rank that holds it
MPI_MINLOC Minimum and the first rank that holds it

Member of the Helmholtz Association August 12-16 2024 Slide 200

REDUCTION VARIANTS [MPI-4.0, 6.9 – 6.11]
Routines with extended or combined functionality:

MPI_Allreduce: perform a global reduction and copy the result onto all processes
MPI_Reduce_scatter: perform a global reduction then copy different parts of the result onto all processes
MPI_Scan: perform a global prefix reduction, include own data in result

Member of the Helmholtz Association August 12-16 2024 Slide 201

IN PLACE MODE
Collectives can be used in in place mode with only one buffer to conserve memory
The special value MPI_IN_PLACE is used in place of either the send or receive buffer address
count and datatype of that buffer are ignored

Member of the Helmholtz Association August 12-16 2024 Slide 202

IN PLACE ALL-TO-ALL SCATTER/GATHER

be
fo
re

aft
er

A B C D E F G H I J K L M N O P

A B C D

A E I M

E F G H

B F J N

I J K L

C G K O

M N O P

D H L P

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are ignored and the input
data is assumed to already be in the correct position in recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 203

IN PLACE ALL-TO-ALL SCATTER/GATHER

be
fo
re

aft
er

A B C D E F G H I J K L M N O P

A E I M B F J N C G K O D H L P

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are ignored and the input
data is assumed to already be in the correct position in recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 203

IN PLACE ALLGATHER

be
fo
re

aft
er

A B C D

A

A B C D

B

A B C D

C

A B C D

D

A B C D

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are ignored and the input
data is assumed to already be in the correct position in recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 204

IN PLACE ALLGATHER

be
fo
re

aft
er

A B C D

A B C D A B C D A B C D A B C D

If MPI_IN_PLACE is used for sendbuf on all processes, sendcount and sendtype are ignored and the input
data is assumed to already be in the correct position in recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 204

IN PLACE GATHER

be
fo
re

aft
er

B
A C D

B

A B C D
A C D

If MPI_IN_PLACE is used for sendbuf on the root process, sendcount and sendtype are ignored on the root
process and the root process will not send data to itself.

Member of the Helmholtz Association August 12-16 2024 Slide 205

IN PLACE GATHER

be
fo
re

aft
er

BA C D

A B C DA C D

If MPI_IN_PLACE is used for sendbuf on the root process, sendcount and sendtype are ignored on the root
process and the root process will not send data to itself.

Member of the Helmholtz Association August 12-16 2024 Slide 205

IN PLACE SCATTER

be
fo
re

aft
er

A B C D

A B C D

B
A C D

If MPI_IN_PLACE is used for recvbuf on the root process, recvcount and recvtype are ignored and the root
process does not send data to itself

Member of the Helmholtz Association August 12-16 2024 Slide 206

IN PLACE SCATTER

be
fo
re

aft
er

A B C D

A B C DA C D

If MPI_IN_PLACE is used for recvbuf on the root process, recvcount and recvtype are ignored and the root
process does not send data to itself

Member of the Helmholtz Association August 12-16 2024 Slide 206

IN PLACE REDUCE

be
fo
re

aft
er

1 2 3 4 5 6
7 8 9

10 11 12

1 2 3 4 5 6
7 8 9

22 26 30
10 11 12

+ + +

If MPI_IN_PLACE is used for sendbuf on the root process, the input data for the root process is taken from
recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 207

IN PLACE REDUCE

be
fo
re

aft
er

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 22 26 30 10 11 12

+ + +

If MPI_IN_PLACE is used for sendbuf on the root process, the input data for the root process is taken from
recvbuf.

Member of the Helmholtz Association August 12-16 2024 Slide 207

IN PLACE EXCLUSIVE SCAN

be
fo
re

aft
er

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

1 2 3

7 8 9

5 7 9

10 11 12

12 15 18

+ + +

If MPI_IN_PLACE is used for sendbuf on all the processes, the input data is taken from recvbuf and replaced by
the results.

Member of the Helmholtz Association August 12-16 2024 Slide 208

IN PLACE EXCLUSIVE SCAN

be
fo
re

aft
er

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 1 2 3 5 7 9 12 15 18

+ + +

If MPI_IN_PLACE is used for sendbuf on all the processes, the input data is taken from recvbuf and replaced by
the results.

Member of the Helmholtz Association August 12-16 2024 Slide 208

BARRIER [MPI-4.0, 6.3]
C int MPI_Barrier(MPI_Comm comm)

F0
8

MPI_Barrier(comm, ierror)
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

Explicitly synchronizes all processes in the group of a communicator by blocking until all processes have entered the
procedure.

Member of the Helmholtz Association August 12-16 2024 Slide 209

BARRIER CONTROL FLOW
Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association August 12-16 2024 Slide 210

BARRIER CONTROL FLOW
Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association August 12-16 2024 Slide 210

BARRIER CONTROL FLOW
Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association August 12-16 2024 Slide 210

BARRIER CONTROL FLOW
Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association August 12-16 2024 Slide 210

BARRIER CONTROL FLOW
Process 0
program example
statement1
call MPI_Barrier(...)
statement3

end program

Process 1
program example
statement1
call MPI_Barrier(...)
statement3

end program

Member of the Helmholtz Association August 12-16 2024 Slide 210

EXERCISE 1
Ex
er
ci
se

18
–
Co

lle
ct
iv
e
Co

m
m
un

ic
at
io
n 18.1 Do it yourself

The template file collectives.{c|F90|py} is provided for you.
Write your own MPI parallel code with the following criteria:

The MPI program should produce a sum of the rank of all processes.
All processes should carry the summed value.
The MPI program should only contain collective calls.
All processes then prints the following message:
I am rank m , I have obtained the sum of all rank=i.

There are multiple ways to achieve the end result. Experiment with different collective calls.

Member of the Helmholtz Association August 12-16 2024 Slide 211

EXERCISE - ADVANCED
Ex
er
ci
se

19
–
Co

lle
ct
iv
e
Co

m
m
un

ic
at
io
n

19.1 Redistribution of Points with Collectives
In the file redistribute.{c|f90|py} implement the function redistributewhich should work as
follows:

1 All processes call the function collectively and pass in an array of 1000 random numbers, generated from a
uniform random distribution on [0, 1).

2 Impose the following rule to each process:
Partition [0, 1) among the nranks processes: process 𝑖 gets partition [𝑖/𝑛𝑟𝑎𝑛𝑘𝑠, (𝑖 + 1)/𝑛𝑟𝑎𝑛𝑘𝑠).

3 Redistribute the points, so that every process is left with only those points that lie inside its partition and
return them from the function.

Guidelines:
Use collectives, either MPI_Gather and MPI_Scatter or MPI_Alltoall(v)
It helps to partition the points so that consecutive blocks can be sent to other processes
MPI_Alltoall can be used to distribute the information that is needed to call MPI_Alltoallv
Dynamic memory management could be necessary

The file contains tests that will check your implementation.
Use: MPI_Alltoall, MPI_Alltoallv

NONBLOCKING COLLECTIVE COMMUNICATION
Blocking

A procedure is blocking if return from the procedure indicates that the user is allowed to reuse resources specified
in the call to the procedure.

Nonblocking

All calls are local and return immediately. All associated send buffers and buffers associated with input arguments
should not be modified, and all associated receive buffers should not be accessed, until the collective operation
completes. The call returns a request handle, which must be passed to a completion call.

Advantages/optimisation:
overlap communication and computation
overlap communication and communication: perform collective operations on overlapping communicators (incl.
same communicator) and point-to-point communication
avoid synchronizing effects

Member of the Helmholtz Association August 12-16 2024 Slide 213

PROPERTIES
For all blocking collective calls a nonblocking counterpart exists.

Nonblocking calls have an extra request handel
Nonblocking calls have are indicated by an extra ‘I’ letter (for immediate) before in call name:
MPI_I<collective call>
Nonblocking collective operation is only complete upon passing through completion routines (MPI_Wait, …)
All processes must call collective operations (blocking and nonblocking) in the same order per communicator

Member of the Helmholtz Association August 12-16 2024 Slide 214

NONBLOCKING BROADCAST [MPI-4.0, 6.12.2]
Blocking operation

C

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)↪

Nonblocking operation

C

int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm, MPI_Request* request)↪

Member of the Helmholtz Association August 12-16 2024 Slide 215

NONBLOCKING BROADCAST [MPI-4.0, 6.12.2]
F0
8

MPI_Bcast(buffer, count, datatype, root, comm, ierror)
type(*), dimension(..) :: buffer
integer, intent(in) :: count, root
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
integer, optional, intent(out) :: ierror

F0
8

MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror)
type(*), dimension(..), asynchronous :: buffer
integer, intent(in) :: count, root
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association August 12-16 2024 Slide 215

