
CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

JUWELS & JURECA
Tuning for the platform

Usage of ParaStation MPI
November 14th, 2024

Patrick Küven

ParTec AG

JUWELS & JURECA

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

JUWELS & JURECA
T u n i n g f o r t h e p l a t f o r m

1. ParaStation MPI
2. Compiling your program
3. Running your program
4. Tuning parameters
5. Resources

Outline

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

History of ParaStation

◉ 1995: University project (→ University of Karlsruhe)
◉ 2005: Open source (→ ParaStation Consortium)
◉ Since 2004: Cooperation with JSC

• various precursor clusters
• DEEP-System (MSA prototype)
• JuRoPA3 (J3)
• JUAMS
• JURECA (Cluster/Booster)
• JUWELS (Cluster/Booster)
• JURECA DC
• JUPITER

ParaStation History

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ based on MPICH (4.1.1)
• supports all MPICH tools (tracing, debugging, …)

◉ proven to scale up to 3,300 nodes and 136.800 procs per job running ParaStation MPI
• JURECA DC: No. 102 (Top500 Jun 2024), No. 45 (Green500 Jun 2024)
• JUWELS Booster: No. 21 (Top500 Jun 2024), No. 44 (Green500 Jun 2024)
• JEDI: No. 189 (Top500 Jun 2024), No. 1 (Green500 Jun 2024)

◉ supports a wide range of interconnects, even in parallel
• InfiniBand on JURECA DC and JUWELS
• Omni-Path on JURECA Booster (deprecated)
• Extoll on DEEP projects research systems (deprecated)

◉ tight integration with Cluster Management (e.g. healthcheck)
◉ MPI libraries for several compilers

• especially for GCC and Intel

ParaStation MPI

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ 2 or more different modules with different hardware

◉ a job can execute dynamically on all modules

◉ you can pick the best out of all the worlds in a single job

◉ e.g. JURECA:
• DC: AMD EPYC + Nvidia A100 + Infiniband
• Booster: Intel KNL + Omni-Path

◉ how do these modules communicate with each other?

ParaStation MPI: Modularity

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ low-level communication layer supporting various transports and protocols

◉ applications may use multiple transports at the same time

ParaStation MPI: pscom

MPI Applications

MPI Interface

Hardware Interfaces

Hardware

MPIR
(hardware-independent)

ADI3

MPID
(hardware-dependent)

M
PI

C
H

Ar
ch

ite
ct

ur
e

psp

pscom

pscom Interface

pscom Plugin Interface

SHM UCX PSGW...

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ for the JURECA DC-Booster System, the ParaStation MPI Gateway Protocol bridges between
Mellanox IB and Intel Omni-Path

◉ in general, the ParaStation MPI Gateway Protocol can connect any two low-level networks supported
by pscom

◉ implemented using the psgw plugin to pscom, working together with instances of the psgwd

ParaStation MPI: pscom

Application

psmpi

PSM

pscom

psgwpsm

Application

psmpi

IB

pscom

ibpsgw

Application

psmpi

PSM

pscom

psgwpsm

Application

psmpi

IB

pscom

ibpsgw

OPA
Fabric

IB
Fabric

psgwd

PSM

pscom

ib psm

IB

psgw

DC:
AMD EPYC +
NVidia A100

Booster:
KNL

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ two processes communicate through a gateway, if they are not directly connected by a high-speed
network (e.g. IB or OPA)

◉ static routing to choose a common gateway

◉ high-speed connections between processes and gateway daemons

◉ virtual connection between both processes through the gateway, transparent for application

◉ virtual connections are multiplexed through gateway connections

◉ further information: apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

ParaStation MPI: Modular Jobs

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ CUDA awareness supported by the following MPI APIs
• Point-to-point (e.g. MPI_SEND, MPI_RECV, …)
• Collectives (e.g. MPI_Allgather, MPI_Reduce, …)
• One-sided (e.g. MPI_Put, MPI_Get, …)
• Atomics (e.g. MPI_Fetch_and_op, MPI_Accumulate, …)

◉ CUDA awareness for all transports via staging

◉ CUDA optimization: UCX

◉ ability to query CUDA awareness at compile- and runtime

ParaStation MPI: CUDA awareness

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ activate CUDA awareness by meta modules
• default configurations

◉ query CUDA awareness:

ParaStation MPI: CUDA awareness

#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf(“The MPI library is CUDA-aware\n”);
#endif

if (MPIX_Query_cuda_support())
 printf(“The MPI library is CUDA-aware\n”);

MPI_Info_get(MPI_INFO_ENV, “cuda_aware”,
 sizeof(is_cuda_aware)-1, is_cuda_aware,
 &api_available);

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ currently MPI-4 version (5.10.0-1) available
◉ single thread tasks

• module load Intel ParaStationMPI
• module load GCC ParaStationMPI

◉ multi-thread tasks (mt)
• module load Intel ParaStationMPI/5.10.0-1-mt
• no multi-thread GCC version available

◉ ChangeLog available with
• less $(dirname $(which mpicc))/../ChangeLog

◉ Gnu and Intel compilers available
◉ module spider for getting current versions
◉ see also the previous talk JUWELS - Introduction

Compiling on JUWELS

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ Wrappers
• mpicc (C)
• mpicxx (C++)
• mpif90 (Fortran 90)
• mpif77 (Fortran 77)

◉ when using OpenMP and the need to use the „mt“ version, add
• -fopenmp (GNU)
• -qopenmp (Intel)

Wrapper

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ libaries are linked at runtime according to LD_LIBRARY_PATH

◉ ldd shows the libraries attached to your binary

◉ look for ParaStation libraries

Did I use the wrapper correctly?

ldd hello_mpi:
...
libmpi.so.12 => /p/software/juwels/stages/2020/
software/psmpi/5.10.0-1-iccifort-2020.2.254-GCC-9.3.0/
lib/libmpi.so.12 (0x000015471ea43000)
...
vs.

...
libmpi.so.12 => /p/software/juwels/stages/2020/
software/psmpi/
5.10.0-1-iccifort-2020.2.254-GCC-9.3.0-mt/lib/
libmpi.so.12 (0x000014f110e58000)
...

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ use srun to start MPI processes
◉ srun -N <nodes> -n <tasks> spawns task

• directly (-A <account>)
• via salloc
• from batch script via sbatch

◉ exports full environment
◉ stop interactive run with (consecutive) ^C

• passed to all tasks
◉ no manual clean-up needed
◉ you can log into nodes which have an allocation/running job step

• squeue -u <user>
• sgoto <jobid> <nodenumber>

 e.g. sgoto 2691804 0

JUWELS: start via srun

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

hello_mpi.c

/* C Example */
#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv) {
 int numprocs, rank, namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
 MPI_Get_processor_name (processor_name, &namelen);
 printf ("Hello world from process %d of %d on %s\n",
 rank, numprocs, processor_name);
 MPI_Finalize ();
 return 0;
}

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ module load Intel
◉ module load ParaStationMPI
◉ mpicc -O3 -o hello_mpi hello_mpi.c
◉ Interactive:
◉ salloc -N 2 -A partec # get an allocation
◉ srun -n 2 ./hello_mpi

◉ Batch:
◉ sbatch ./hello_mpi.sh

◉ Increase verbosity:
• PSP_DEBUG=[1,2,3,…] srun -n 2 ./hello_mpi

Running on JUWELS (Intel chain)

Hello world from process 0 of 2 on jwc08n188.juwels
Hello world from process 1 of 2 on jwc08n194.juwels

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ ParaStation process pinning:
• avoid task switching
• make better use of CPU cache and memory bandwidth

◉ JUWELS is pinning by default:
• so –-cpu-bind=threads may be omitted

◉ manipulate pinning:
• e.g. for „large memory / few task“ applications

◉ manipulate via
• --cpu-bind=threads|sockets|cores|mask_cpu:<mask1>,<mask2>,…

 CPU masks are always interpreted as hexadecimal values
• --distribution=*|block|cyclic|arbitrary|plane=<options> [:*|block|

cyclic|fcyclic[:*|block|cyclic|fcyclic]][,Pack|NoPack]
◉ further information: https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

Process Placement

https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ Example:
• --ntasks-per-node=4
• --cpus-per-task=3

◉ --cpu-bind=threads

◉ --cpu-bind=mask_cpu:0x7,0x700,0xE0,0xE000

Process Placement

0 0 2 2
0 2

1 1 3 3
1 3

1 1 1 3 3 30 0 0 2 2 2

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ best practice depends not only on topology, but also on characteristics of application:

◉ putting threads far apart is
• improving the aggregated memory bandwidth available to your application
• improving the combined cache size available to your application
• decreasing the performance of synchronization constructs

◉ putting threads close together is
• improving the performance of synchronization constructs
• decreasing the available memory bandwidth and cache size

Process Placement

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

Hybrid MPI/OpenMP

#include <stdio.h>
#include <mpi.h>
#include <omp.h>
int main(int argc, char *argv[]) {
 int numprocs, rank, namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int iam = 0, np = 1;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(processor_name, &namelen);
#pragma omp parallel default(shared) private(iam, np)
 {
 np = omp_get_num_threads();
 iam = omp_get_thread_num();
 printf("Hello from thread %02d out of %d from process %d out of %d on %s\n",
 iam, np, rank, numprocs, processor_name);
 }
 MPI_Finalize();
}

Example:
2 Nodes, 2x2 Procs,
2x2x24 Threads

Node x Node y
Node x

P0
Node y

P1 P2 P3

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ module load Intel ParaStationMPI/5.10.0-1-mt
◉ mpicc -O3 -qopenmp -o hello_hybrid hello_hybrid.c
◉ salloc -N 2 -A partec –cpus-per-task=24
◉ export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
◉ srun -n 4 ./hello_hybrid | sort

On JUWELS

Hello from thread 00 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 00 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 00 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 00 out of 24 from process 3 out of 4 on jwc01n247.juwels
Hello from thread 01 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 01 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 01 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 01 out of 24 from process 3 out of 4 on jwc01n247.juwels

.

.

.
Hello from thread 23 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 23 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 23 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 23 out of 24 from process 3 out of 4 on jwc01n247.juwels

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ JUWELS:
• 2 Sockets, 24 Cores per Socket
• 2 HW-Threads per Core
• → 96 HW-Threads possible

◉ normally (SMT):
• HW-Threads 0-23, 48-71 → CPU0
• HW-Threads 24-47, 72-95 → CPU1

Pinning

Node
Socket 0

Core 0 Core 1 … Core 22 Core 23

HWT 0 HWT 1 … HWT 22 HWT 23

HWT 48 HWT 49 … HWT 70 HWT 71

Socket 1
Core 24 Core 25 … Core 46 Core 47

HWT 24 HWT 25 … HWT 46 HWT 47

HWT 72 HWT 73 … HWT 94 HWT 95

“Package”

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ JURECA DC:
• 2 Sockets, 64 Cores per Socket
• 2 HW-Threads per Core
• → 256 HW-Threads possible

◉ normally (SMT):
• HW-Threads 0-63, 128-191 → CPU0
• HW-Threads 64-127, 192-255 → CPU1

Pinning

Node
Socket 0

Core 0 Core 1 … Core 62 Core 63

HWT 0 HWT 1 … HWT 62 HWT 63

HWT 128 HWT 129 … HWT 190 HWT 191

Socket 1
Core 64 Core 65 … Core 126 Core 127

HWT 64 HWT 65 … HWT 126 HWT 127

HWT 192 HWT 193 … HWT 254 HWT 255

“Package”

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ no thread pinning by default on JURECA and JUWELS

◉ allow the Intel OpenMP library thread placing
• export KMP_AFFINITY=[verbose,modifier,…]

 compact: place threads as close as possible
 scatter: as evenly as possible

◉ full environment is exported via srun on JURECA and JUWELS

◉ for GCC: set GOMP_CPU_AFFINITY (see manual)

Pinning

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ every MPI process talks to all others:
• (N-1) x 0.55 MB communication buffer space per process!

◉ example 1 on JUWELS:
• job size 256 x 96 = 24,576 processes
• 24,575 x 0.55 MB → ~ 13,516 MB / process
• x 96 processes / node → ~ 1,267 GB communication buffer space
• but there is only 96 GB of main memory per node

◉ example 2 on JURECA DC:
• job size 256 x 256 = 65,536 processes
• 65,535 x 0,55 MB → ~ 36,044 MB / process
• x 256 processes / node → ~ 9,011 GB communication buffer space
• but there is only 512 GB of main memory per node

Large Job Considerations

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ Three possible solutions:
◉ 1. Try using alternative meta modules

◉ 2. Create buffers on demand only:
• export PSP_ONDEMAND=1
• activated by default!

◉ 3. Reduce the buffer queue length:
• (default queue length is 16)
• export PSP_OPENIB_SENDQ_SIZE=3
• export PSP_OPENIB_RECVQ_SIZE=3
• do not go below 3, deadlocks might occur!
• trade-off: performance penalty

 (sending many small messages)

On Demand / Buffer Size

16k

16k

16k

16k

queue length

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ On-Demand works best with nearest neighbor communications
• (Halo) Exchange
• Scatter/Gather
• All-reduce
• …

◉ but for All-to-All communication:
• queue size modification only viable option…

◉ example

On Demand / Queue Size Guidelines

rank 0: for (; ;) MPI_Send ()
rank 1: for (; ;) MPI_Recv ()
 PSP_OPENIB_SENDQ/RECVQ_SIZE=4: 1.8 seconds
 PSP_OPENIB_SENDQ/RECVQ_SIZE=16: 0.6 seconds
 PSP_OPENIB_SENDQ/RECVQ_SIZE=64: 0.5 seconds

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ www.par-tec.com
◉ www.fz-juelich.de/en/ias/jsc/systems/supercomputers
◉ /opt/parastation/doc/pdf
◉ by mail: sc@fz-juelich.de
◉ by mail: support@par-tec.com
◉ download ParaStation MPI at github:

• https://github.com/ParaStation/psmgmt
• https://github.com/ParaStation/pscom
• https://github.com/ParaStation/psmpi

Resources

http://www.par-tec.com/
http://www.fz-juelich.de/en/ias/jsc/systems/supercomputers
mailto:sc@fz-juelich.de
mailto:support@par-tec.com
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

◉ you now should be able to
• compile
• run your application
• tune some runtime parameters
• diagnose and fix specific errors
• know where to turn to in case of problems

Summary

CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.

Questions?

Thank you for your attention!

