
CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.  

JUWELS & JURECA
Tuning for the platform

Usage of ParaStation MPI
November 14th, 2024

Patrick Küven

ParTec AG

JUWELS & JURECA



CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.  

JUWELS & JURECA
T u n i n g  f o r  t h e  p l a t f o r m

1. ParaStation MPI
2. Compiling your program
3. Running your program
4. Tuning parameters
5. Resources

Outline



CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.  

History of ParaStation

◉ 1995: University project (→ University of Karlsruhe)
◉ 2005: Open source (→ ParaStation Consortium)
◉ Since 2004: Cooperation with JSC

• various precursor clusters
• DEEP-System (MSA prototype)
• JuRoPA3 (J3)
• JUAMS
• JURECA (Cluster/Booster)
• JUWELS (Cluster/Booster)
• JURECA DC
• JUPITER

ParaStation History
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◉ based on MPICH (4.1.1)
• supports all MPICH tools (tracing, debugging, …)

◉ proven to scale up to 3,300 nodes and 136.800 procs per job running ParaStation MPI
• JURECA DC: No. 102 (Top500 Jun 2024), No. 45 (Green500 Jun 2024)
• JUWELS Booster: No. 21 (Top500 Jun 2024), No. 44 (Green500 Jun 2024)
• JEDI: No. 189 (Top500 Jun 2024), No. 1 (Green500 Jun 2024)

◉ supports a wide range of interconnects, even in parallel
• InfiniBand on JURECA DC and JUWELS
• Omni-Path on JURECA Booster (deprecated)
• Extoll on DEEP projects research systems (deprecated)

◉ tight integration with Cluster Management (e.g. healthcheck)
◉ MPI libraries for several compilers

• especially for GCC and Intel

ParaStation MPI
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◉ 2 or more different modules with different hardware

◉ a job can execute dynamically on all modules

◉ you can pick the best out of all the worlds in a single job

◉ e.g. JURECA:
• DC: AMD EPYC + Nvidia A100 + Infiniband
• Booster: Intel KNL + Omni-Path

◉ how do these modules communicate with each other?

ParaStation MPI: Modularity
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◉ low-level communication layer supporting various transports and protocols

◉ applications may use multiple transports at the same time

ParaStation MPI: pscom
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◉ for the JURECA DC-Booster System, the ParaStation MPI Gateway Protocol bridges between 
Mellanox IB and Intel Omni-Path

◉ in general, the ParaStation MPI Gateway Protocol can connect any two low-level networks supported 
by pscom

◉ implemented using the psgw plugin to pscom, working together with instances of the psgwd

ParaStation MPI: pscom
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◉ two processes communicate through a gateway, if they are not directly connected by a high-speed 
network (e.g. IB or OPA)

◉ static routing to choose a common gateway

◉ high-speed connections between processes and gateway daemons

◉ virtual connection between both processes through the gateway, transparent for application

◉ virtual connections are multiplexed through gateway connections

◉ further information: apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

ParaStation MPI: Modular Jobs

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html
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◉ CUDA awareness supported by the following MPI APIs
• Point-to-point (e.g. MPI_SEND, MPI_RECV, …)
• Collectives (e.g. MPI_Allgather, MPI_Reduce, …)
• One-sided (e.g. MPI_Put, MPI_Get, …)
• Atomics (e.g. MPI_Fetch_and_op, MPI_Accumulate, …)

◉ CUDA awareness for all transports via staging

◉ CUDA optimization: UCX

◉ ability to query CUDA awareness at compile- and runtime

ParaStation MPI: CUDA awareness
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◉ activate CUDA awareness by meta modules
• default configurations

◉ query CUDA awareness:

ParaStation MPI: CUDA awareness

#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf(“The MPI library is CUDA-aware\n”);
#endif

if (MPIX_Query_cuda_support())
    printf(“The MPI library is CUDA-aware\n”);

MPI_Info_get(MPI_INFO_ENV, “cuda_aware”,
  sizeof(is_cuda_aware)-1, is_cuda_aware,
  &api_available);
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◉ currently MPI-4 version (5.10.0-1) available
◉ single thread tasks

• module load Intel ParaStationMPI
• module load GCC ParaStationMPI

◉ multi-thread tasks (mt)
• module load Intel ParaStationMPI/5.10.0-1-mt
• no multi-thread GCC version available

◉ ChangeLog available with
• less $(dirname $(which mpicc))/../ChangeLog

◉ Gnu and Intel compilers available
◉ module spider for getting current versions
◉ see also the previous talk JUWELS - Introduction

Compiling on JUWELS
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◉ Wrappers
• mpicc (C)
• mpicxx (C++)
• mpif90 (Fortran 90)
• mpif77 (Fortran 77)

◉ when using OpenMP and the need to use the „mt“ version, add
• -fopenmp (GNU)
• -qopenmp (Intel)

Wrapper
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◉ libaries are linked at runtime according to LD_LIBRARY_PATH

◉ ldd shows the libraries attached to your binary

◉ look for ParaStation libraries

Did I use the wrapper correctly?

ldd hello_mpi:
...
libmpi.so.12 => /p/software/juwels/stages/2020/
software/psmpi/5.10.0-1-iccifort-2020.2.254-GCC-9.3.0/
lib/libmpi.so.12 (0x000015471ea43000)
...
vs.

...
libmpi.so.12 => /p/software/juwels/stages/2020/
software/psmpi/
5.10.0-1-iccifort-2020.2.254-GCC-9.3.0-mt/lib/
libmpi.so.12 (0x000014f110e58000)
...
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◉ use srun to start MPI processes
◉ srun -N <nodes> -n <tasks> spawns task

• directly (-A <account>)
• via salloc
• from batch script via sbatch

◉ exports full environment
◉ stop interactive run with (consecutive) ^C

• passed to all tasks
◉ no manual clean-up needed
◉ you can log into nodes which have an allocation/running job step

• squeue -u <user>
• sgoto <jobid> <nodenumber>

 e.g. sgoto 2691804 0

JUWELS: start via srun
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hello_mpi.c

/* C Example */
#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv) {
  int numprocs, rank, namelen;
  char processor_name[MPI_MAX_PROCESSOR_NAME];
  MPI_Init (&argc, &argv);
  MPI_Comm_rank (MPI_COMM_WORLD, &rank);
  MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
  MPI_Get_processor_name (processor_name, &namelen);
  printf ("Hello world from process %d of %d on %s\n",
          rank, numprocs, processor_name);
  MPI_Finalize ();
  return 0;
}
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◉ module load Intel
◉ module load ParaStationMPI
◉ mpicc -O3 -o hello_mpi hello_mpi.c
◉ Interactive:
◉ salloc -N 2 -A partec # get an allocation
◉ srun -n 2 ./hello_mpi

◉ Batch:
◉ sbatch ./hello_mpi.sh

◉ Increase verbosity:
• PSP_DEBUG=[1,2,3,…] srun -n 2 ./hello_mpi

Running on JUWELS (Intel chain)

Hello world from process 0 of 2 on jwc08n188.juwels
Hello world from process 1 of 2 on jwc08n194.juwels
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◉ ParaStation process pinning:
• avoid task switching
• make better use of CPU cache and memory bandwidth

◉ JUWELS is pinning by default:
• so –-cpu-bind=threads may be omitted

◉ manipulate pinning:
• e.g. for „large memory / few task“ applications

◉ manipulate via
• --cpu-bind=threads|sockets|cores|mask_cpu:<mask1>,<mask2>,…

 CPU masks are always interpreted as hexadecimal values
• --distribution=*|block|cyclic|arbitrary|plane=<options> [:*|block|

cyclic|fcyclic[:*|block|cyclic|fcyclic]][,Pack|NoPack]
◉ further information: https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

Process Placement

https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html
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◉ Example:
• --ntasks-per-node=4
• --cpus-per-task=3

◉ --cpu-bind=threads

◉ --cpu-bind=mask_cpu:0x7,0x700,0xE0,0xE000

Process Placement

0 0 2 2
0 2

1 1 3 3
1 3

1 1 1 3 3 30 0 0 2 2 2
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◉ best practice depends not only on topology, but also on characteristics of application:

◉ putting threads far apart is
• improving the aggregated memory bandwidth available to your application
• improving the combined cache size available to your application
• decreasing the performance of synchronization constructs

◉ putting threads close together is
• improving the performance of synchronization constructs
• decreasing the available memory bandwidth and cache size

Process Placement
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Hybrid MPI/OpenMP

#include <stdio.h>
#include <mpi.h>
#include <omp.h>
int main(int argc, char *argv[]) {
  int numprocs, rank, namelen;
  char processor_name[MPI_MAX_PROCESSOR_NAME];
  int iam = 0, np = 1;
  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Get_processor_name(processor_name, &namelen);
#pragma omp parallel default(shared) private(iam, np)
  {
    np = omp_get_num_threads();
    iam = omp_get_thread_num();
    printf("Hello from thread %02d out of %d from process %d out of %d on %s\n",
           iam, np, rank, numprocs, processor_name);
  }
  MPI_Finalize();
}

Example:
2 Nodes, 2x2 Procs,
2x2x24 Threads

Node x Node y
Node x

P0
Node y

P1 P2 P3



CONFIDENTIALITY NOTICE: THE CONTENTS OF THIS FILE ARE INTENDED SOLELY FOR THE ADDRESSEES AND MAY CONTAIN CONFIDENTIAL AND/OR PRIVILEGED INFORMATION AND MAY BE LEGALLY PROTECTED FROM DISCLOSURE.  

◉ module load Intel ParaStationMPI/5.10.0-1-mt
◉ mpicc -O3 -qopenmp -o hello_hybrid hello_hybrid.c
◉ salloc -N 2 -A partec –cpus-per-task=24
◉ export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
◉ srun -n 4 ./hello_hybrid | sort

On JUWELS

Hello from thread 00 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 00 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 00 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 00 out of 24 from process 3 out of 4 on jwc01n247.juwels
Hello from thread 01 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 01 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 01 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 01 out of 24 from process 3 out of 4 on jwc01n247.juwels

.

.

.
Hello from thread 23 out of 24 from process 0 out of 4 on jwc01n238.juwels
Hello from thread 23 out of 24 from process 1 out of 4 on jwc01n238.juwels
Hello from thread 23 out of 24 from process 2 out of 4 on jwc01n247.juwels
Hello from thread 23 out of 24 from process 3 out of 4 on jwc01n247.juwels
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◉ JUWELS:
• 2 Sockets, 24 Cores per Socket
• 2 HW-Threads per Core
• → 96 HW-Threads possible

◉ normally (SMT):
• HW-Threads 0-23, 48-71 → CPU0
• HW-Threads 24-47, 72-95 → CPU1

Pinning

Node
Socket 0

Core 0 Core 1 … Core 22 Core 23

HWT 0 HWT 1 … HWT 22 HWT 23

HWT 48 HWT 49 … HWT 70 HWT 71

Socket 1
Core 24 Core 25 … Core 46 Core 47

HWT 24 HWT 25 … HWT 46 HWT 47

HWT 72 HWT 73 … HWT 94 HWT 95

“Package”
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◉ JURECA DC:
• 2 Sockets, 64 Cores per Socket
• 2 HW-Threads per Core
• → 256 HW-Threads possible

◉ normally (SMT):
• HW-Threads 0-63, 128-191 → CPU0
• HW-Threads 64-127, 192-255 → CPU1

Pinning

Node
Socket 0

Core 0 Core 1 … Core 62 Core 63

HWT 0 HWT 1 … HWT 62 HWT 63

HWT 128 HWT 129 … HWT 190 HWT 191

Socket 1
Core 64 Core 65 … Core 126 Core 127

HWT 64 HWT 65 … HWT 126 HWT 127

HWT 192 HWT 193 … HWT 254 HWT 255

“Package”
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◉ no thread pinning by default on JURECA and JUWELS

◉ allow the Intel OpenMP library thread placing
• export KMP_AFFINITY=[verbose,modifier,…]

 compact: place threads as close as possible
 scatter: as evenly as possible

◉ full environment is exported via srun on JURECA and JUWELS

◉ for GCC: set GOMP_CPU_AFFINITY (see manual)

Pinning
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◉ every MPI process talks to all others:
• (N-1) x 0.55 MB communication buffer space per process!

◉ example 1 on JUWELS:
• job size 256 x 96 = 24,576 processes
• 24,575 x 0.55 MB → ~ 13,516 MB / process
• x 96 processes / node → ~ 1,267 GB communication buffer space
• but there is only 96 GB of main memory per node

◉ example 2 on JURECA DC:
• job size 256 x 256 = 65,536 processes
• 65,535 x 0,55 MB → ~ 36,044 MB / process
• x 256 processes / node → ~ 9,011 GB communication buffer space
• but there is only 512 GB of main memory per node

Large Job Considerations
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◉ Three possible solutions: 
◉ 1. Try using alternative meta modules

◉ 2. Create buffers on demand only:
• export PSP_ONDEMAND=1
• activated by default!

◉ 3. Reduce the buffer queue length:
• (default queue length is 16)
• export PSP_OPENIB_SENDQ_SIZE=3
• export PSP_OPENIB_RECVQ_SIZE=3
• do not go below 3, deadlocks might occur!
• trade-off: performance penalty

 (sending many small messages)

On Demand / Buffer Size

16k

16k

16k

16k

queue length
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◉ On-Demand works best with nearest neighbor communications
• (Halo) Exchange
• Scatter/Gather
• All-reduce
• …

◉ but for All-to-All communication:
• queue size modification only viable option…

◉ example

On Demand / Queue Size Guidelines

rank 0: for ( ; ; ) MPI_Send ()
rank 1: for ( ; ; ) MPI_Recv ()
 PSP_OPENIB_SENDQ/RECVQ_SIZE=4: 1.8 seconds
 PSP_OPENIB_SENDQ/RECVQ_SIZE=16: 0.6 seconds
 PSP_OPENIB_SENDQ/RECVQ_SIZE=64: 0.5 seconds
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◉ www.par-tec.com
◉ www.fz-juelich.de/en/ias/jsc/systems/supercomputers
◉ /opt/parastation/doc/pdf
◉ by mail: sc@fz-juelich.de
◉ by mail: support@par-tec.com
◉ download ParaStation MPI at github:

• https://github.com/ParaStation/psmgmt
• https://github.com/ParaStation/pscom
• https://github.com/ParaStation/psmpi

Resources

http://www.par-tec.com/
http://www.fz-juelich.de/en/ias/jsc/systems/supercomputers
mailto:sc@fz-juelich.de
mailto:support@par-tec.com
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi
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◉ you now should be able to
• compile
• run your application
• tune some runtime parameters
• diagnose and fix specific errors
• know where to turn to in case of problems

Summary
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Questions?

Thank you for your attention!


