

JUPYTERLAB - SUPERCOMPUTING IN YOUR BROWSER

Introduction to Jupyter-JSC at Jülich Supercomputing Centre

2024-11-12 I JENS H. GÖBBERT

(J.GOEBBERT@FZ-JUELICH.DE)

TIM KREUZER

(T.KREUZER@FZ-JUELICH.DE)

MOTIVATION

your thinking, your reasoning, your insides, your ideas

JUPYTER NOTEBOOK

creating reproducible computational narratives

MOTIVATION

Rise of Jupyter's popularity

- In 2007, Fernando Pérez and Brian Granger announced
 "Ipython: a system for interactive scientific computing" [1]
- In 2014, Fernando Pérez announced
 a spin-off project from IPython called Project Jupyter.
 - IPython continued to exist as a Python shell and a kernel for Jupyter, while the Jupyter notebook moved under the Jupyter name.
- In 2015, GitHub and the Jupyter Project announced native rendering of Jupyter notebooks file format (.ipynb files) on the GitHub
- In 2017, the first JupyterCon was organized by O'Reilly in New York City.
 Fernando Pérez opened the conference with an inspiring talk. [2]
- In 2018, JupyterLab was announced as the next-generation web-based interface for Project Jupyter.
- In 2019, JupyterLab 1.0 ...
 - In 2020, JupyterLab 2.0 ...
 - In 2021, JupyterLab 3.0 ...
 - In 2023, JupyterLab 4.0 ...

Counting how many Monthly Active Users (MAU) on GitHub are using Jupyter Notebooks

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/https://github.com/benfred/github-analysis

^[2] Pérez F, Project Jupyter: From interactive Python to open science -> https://www.youtube.com/watch?v=xuNj5paMuow

HISTORY OF JUPYTERLAB AT JSC

2018 2019 2020 2021 2022 2023 2024

Initial Basis

JupyterLab modules
Authentication via Unity/IdM
Authorization via UNICORE
Orchestration Docker Swarm
Synchronization of User-DBs
Basic Data Protection Regulation
Fulfill Safety Requirements

Usage

Inplace Dokumentation R, Julia, C++, Octave, Ruby JupyterLabs on OpenStack Dashboard Development **JupyterLab Usability** Kernel for Vis, DL Testing & Benchmarking

Features

Remote Desktop Integration
Optional 2-Factor Auth.
Use for Workshops
Specialized Functionalities
Enhanced Data Access
Extended Logging
Cross-Side Demonstration

Redesign

Switch to **Kubernetes**Redesign Management
Switch to **JupyterLab 3**GPFS through UFTP
Support for User Extensions
Easybuild Modularization

Customization

Project/Community JHubs
Upgrade JHub Entrance-UI
Comp. Resource Permissions
Maintenance Improvements
Upgrade of Load Balancer
Modularization of Backend
External Clouds & HPC

JLab Beta

JLab 1

JLab 2

JLab 3

JLab3+X

JLab4

HISTORY OF JUPYTERLAB AT JSC

What is JupyterLab

JupyterLab

- Interactive working environment in the web browser
- For the creation of reproducible computer-aided narratives
- Very popular with researchers from all fields
- Jupyter = <u>Julia + Python + R</u>

Multi-purpose working environment

- Language agnostic
- Supports execution environments ("kernels")
 - For dozens of languages: Python, R, Julia, C++, ...
- Extensible software design ("extensions")
 - many server/client plug-ins available
 - Eg. in-browser-terminal and file-browsing

Document-Centered Computing ("notebooks")

- Combines code execution, rich text, math, plots and rich media.
- All-in-one document called Jupyter Notebook

https://jupyterlab.readthedocs.io

What is a Jupyter Notebook?

Jupyter Notebook

A notebook document (file extension .ipynb) is a document that can be rendered in a web browser

- It is a file, which stores your work in JSON format
- Based on a set of open standards for interactive computing
- Allows development of custom applications with embedded interactive computing.
- Can be extended by third parties
- Directly convertible to PDF, HTML, LateX ...
- Supported by many applications such as GitHub, GitLab, etc..

What is a Jupyter Kernel?

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for visualization, quantum-computing
- You can easily create your own kernel which for example runs your specialized virtual Python environment.

https://jupyter-notebook.readthedocs.io/ https://github.com/jupyter/jupyter/wiki/Jupyter-kernels https://zeromq.org

What is a JupyterLab Extension?

JupyterLab Extension

JupyterLab extensions can customize or enhance any part of JupyterLab.

JupyterLab Extensions

- provide new file viewers, editors, themes
- provide renderers for rich outputs in notebooks
- add items to the menu or command palette
- add keyboard shortcuts
- add settings in the settings system.
- Extensions can even provide an API for other extensions to use and can depend on other extensions.

The whole JupyterLab itself is simply a **collection of extensions** that are no more powerful or privileged than any custom extension.

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html https://github.com/topics/jupyterlab-extension

Bringing all together

INSTALLATION

JUPYTERLAB - WHEREVER YOU PRESERVED

Local, Remote, Browser-only

Local installation:

JupyterLab installed using conda, mamba, pip, pipenv or docker.

→ https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

JUPYTERLAB - WHEREVER YOU PRE-

Local, Remote, Browser-only

Local installation:

- JupyterLab installed using conda, mamba, pip, pipenv or docker.
 - → https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
- JupyterLab installed as normal desktop application = JupyterLab Desktop
 - → https://github.com/jupyterlab/jupyterlab-desktop/releases

JUPYTERLAB - WHEREVER YOU PRESE

Local, Remote, Browser-only

Local installation:

- JupyterLab installed using conda, mamba, pip, pipenv or docker.
 - → https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
- JupyterLab installed as normal desktop application = JupyterLab Desktop
 - → https://github.com/jupyterlab/jupyterlab-desktop/releases

Remote (cluster) installation:

- JupyterLab installed on a remote server and accessed through the browser
 - in \$HOME (e.g. using pip or miniconda)
 - system-wide (e.g. with Easybuild, Spark) by the admins.

JUPYTERLAB - WHEREVER YOU PRE

Local, Remote, Browser-only

Local installation:

- JupyterLab installed using conda, mamba, pip, pipenv or docker.
 - → https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
- JupyterLab installed as normal desktop application = JupyterLab Desktop
 - → https://github.com/jupyterlab/jupyterlab-desktop/releases

Remote (cluster) installation:

- JupyterLab installed on a remote server and accessed through the browser
 - in \$HOME (e.g. using pip or miniconda)
 - system-wide (e.g. with Easybuild, Spark) by the admins.

Browser-only installation (limited feature set):

- JupyterLab local with server + client in your browser = JupyterLite
 Includes a browser-ready Python environment named Pyodide.
 - → https://jupyter.org/try-jupyter/lab

START & LOGIN

JUPYTER-JSC WEBSERVICE Start your JupyterLab (the easy way) JupyterLab ssh jupyter **Terminal** JupyterLab tunnel Server **IPYNB** JupyterLab Extension JupyterLab Jupyter Jupyter Client Kernel Extension Server hpc cluster browser JupyterLab JupyterLab jupyter Jupyterhttps JupyterLab ssh - tunnel Hub Server **IPYNB** Extension JupyterLab Client Extension Jupyter Jupyter Unity-ØMQ_ **UNICORE** (Notebook) Kernel IdM Server browser hpc cluster

PRE-ACCESS TODOS

- 1) Register & Login
 - √ https://judoor.fz-juelich.de
- 2) Join a project
 - ✓ Wait to get joined by the project PI
- 3) Sign usage agreement
 - ✓ Wait for creation of HPC accounts
- 4) Check Connected Services:
 - ✓ jupyter-jsc

https://jupyter-jsc.fz-juelich.de

Control Panel

A. New JupyterLab

B. Configuration Dialog

- Lab Config: set Name, Version, System, Account, Project, Partition
- Resources: if running on a compute node
- Kernels and Extensions: Optional addons

C. Actions

- Start/Open/Stop a JupyterLab
- Change/Delete configuration

D. Statusbar

- Shows, (hover to get more details)
 - Number of active users in the last 24h
 - Number of running JupyterLabs
- Click to see system status page

E. Logout

 Logout will ask what you want to do with the running JupyterLabs – be careful what you answer!

JupyterLab Configuration

Jupyter-JSC – Configuration

Available options depend on

- user account settings visible in judoor.fz-juelich.de
- system specific usage agreement on JuDoor is signed (!!!)
- currently available systems in all of your projects

Basic options

- Version: multiple versions of JupyterLab are installed
- System: JUWELS, JURECA, JUSUF, DEEP, JSC-Cloud
- Account: In general users only have a single account
- Project: project which have access to the selected system
- Partition:
 partition which are accessible by the project
 (this includes the decision for LoginNode and ComputeNode)

Extra options

Partition == compute Resources

Kernel and Extensions non-default JupyterKernel, Extensions, Proxies

JupyterLab Configuration

Jupyter-JSC – Configuration

Available options depend on

Partition == compute

Kernel and Extensions

Resources

user account settings visible in judoor.fz-juelich.de

O A == https://jupyter-isc.fz-juelich.de/hub/home

batch

develgpus

mem192

non-default JupyterKernel, Extensions, Proxies

JUPYTERLAB EVERYWHERE

JupyterLab everywhere

- 1 JupyterLab on cloud
- 2 JupyterLab on login nodes
- 3 JupyterLab on compute nodes

no. login nodes = In

no. compute nodes = cn

- [1] https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
- [2] https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html
- [3] https://apps.fz-juelich.de/jsc/hps/jusuf/configuration.html
- [4] https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
- [5] https://apps.fz-juelich.de/jsc/hps/just/configuration.html

JUPYTERLAB EVERYWHERE

[3] https://apps.fz-juelich.de/jsc/hps/jusuf/configuration.html

[5] https://apps.fz-juelich.de/jsc/hps/just/configuration.html

[4] https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system

JupyterLab Client Extension

JupyterLab

JSC-Cloud – OpenStack Cluster for running Virtual Machines

JSC-Cloud

Any user having

- a JSC account (judoor.fz-juelich.de)
- and the Connected Service "jupyter-jsc" enabled (default for users with HPC accounts or fz-juelich.de email address)

can start

Jupyter-JSC container images (containing JupyterLab) on the JSC-Cloud

https

Jupyter-

Hub

Unity-

ssh - tunnel

UNICORE

System: JSC-Cloud

Start JupyterLab on JSC-Cloud

- Requirements:
 - Registered JSC account at https://judoor.fz-juelich.de
 - Logged in to Jupyter-JSC at https://jupyter-jsc.fz-juelich.de
 - Named a new JupyterLab configuration
- Start a JupyterLab:
 - Version == "JupyterLab 4.2"
 - System == "JSC-Cloud"

Limitations on JupyterLab on JSC-Cloud

- max. memory depends on chosen flavor
 - ATTENTION: the container automatically stops, when more memory is used
- Storage in Jupyter-JSC container
 - is local to the JSC-Cloud and persistent
 - HPC \$HOMEs are mounted read-only (but can be mounted read-write)
- There is no flavor with GPUs, yet

HDF-Cloud – OpenStack Cluster for running Virtual Machines

System: JSC-Cloud

Custom Docker image on the JSC-Cloud

- Requirements:
 - Custom docker image must start a Jupyter server
- Examples:
 - https://jupyter-dockerstacks.readthedocs.io/en/latest/using/selecting.html

System: JSC-Cloud

Custom Docker image on the JSC-Cloud

- Requirements:
 - Custom docker image must start a Jupyter server
- Examples:
 - https://jupyter-dockerstacks.readthedocs.io/en/latest/using/selecting.html

Repo2Docker (Binder) on the JSC-Cloud

- Requirements:
 - Repository compatible with repo2docker
- Details:
 - https://repo2docker.readthedocs.io/en/latest/ configuration/index.html

HOW TO MOUNT GPFS ON HDF-CLOUD

https://gitlab.jsc.fz-juelich.de/jupyter4jsc/training-2024.04-jupyter4hpc/-/blob/main/day2_hpcenv/7_cloud-hpc_challenges/1-hdf-cloud_mount-hpc-storage.ipynb

JUPYTER-JSC SECRETS

Very important to know

Secret 1: Support button

Let us know, if something does not work.
 We can only fix it, if we know it.

Secret 2: Reload on connection loss

- "Server Not Running"
 means, that your browser just lost connection
 => Just hit "Dismiss" !!!
 (as soon as you are online again)
- "File Save Error for <...>"
 means, that your browser just lost connection
 => Just hit "Dismiss" !!!
 (as soon as you are online again)

You can **always** safely hit the "Reload" button of your browser, if the connection to JupyterLab ever gets lost. (it will just restart JupyterLab on the browser-site)

JUPYTER-JSC SECRETS

For experts only ©

Secret 3: Jupyter-JSC logs

- Jupyter-Lab gets started by UNICORE on our HPC systems
- On startup UNICORE created the directory \$SCRATCH_<project>/unicore-jobs/<random-hash>/
 - In the terminal of a running JupyterLab, this directory is \$JUPYTER_LOG_DIR
- In this directory you find
 - stdout -> terminal output of jupyterlab messages
 - stderr -> terminal output of jupyterlab error messages
 - start -> details how your JupyterLab got started

Secret 4: change to a different JupyterLab version

- In .start you can see, that
 - \$HOME/.jupyter/start_jupyter-jsc.sh

is used to prepare the environment for JupyterLab.

This script must ensure that the command jupyter is available in \$PATH.

It enables you to switch to an older/newer/other version of JupyterLab, if the default one gives you trouble or is missing features.

#!/bin/bash

module purge module load Stages/2024 module load GCCcore/.12.3.0 module load Jupyter-bundle/20240520

Switch to a customized JupyterLab with
\$HOME/.jupyter/start jupyter-jsc.sh

Some comments about the UI

JUPYTERLAB EXTENSIONS

Some general information

List the installed JupyterLab extensions

- Open the Launcher
- Start a Terminal
- Run command jupyter labextension list

Extensions are installed in JupyterLab´s Application Directory, which

- stores any information that JupyterLab persists
 - including settings and built assets of extensions
- default location is <sys-prefix>/share/jupyter/lab
- can be relocated by setting \$JUPYTERLAB_DIR
 - contains the JupyterLab static assets
 - (e.g. static/index.html)
 - JupyterLab < 3: any change requires a rebuild of the whole JupyterLab to take effect!
 - JupyterLab >= 3: introduced prebuild extensions, which are loaded at startup time

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

Hint: JupyterLab Playground

A JupyterLab extension to write and load simple JupyterLab plugins inside JupyterLab.

https://github.com/jupyterlab/jupyterlab-plugin-playground

Installed by default at Jupyter-JSC

JupyterLab-Git

JupyterLab extension for version control using Git

https://github.com/jupyterlab/jupyterlab-git

NBDime

Tools for diffing and merging of Jupyter notebooks.

https://github.com/jupyter/nbdime

Installed by default at Jupyter-JSC

NVDashboard

NVDashboard is an open-source package for the real-time visualization of NVIDIA GPU metrics in interactive Jupyter Lab environments.

https://github.com/rapidsai/jupyterlab-nvdashboard https://developer.nvidia.com/blog/gpu-dashboards-in-jupyter-lab/

IPyMPL - matplotlib

Leveraging the Jupyter interactive widgets framework, ipympl enables the interactive features of matplotlib in the Jupyter notebook and in JupyterLab.

https://github.com/matplotlib/ipympl

Installed by default at Jupyter-JSC

Core packages	Version	Link	Description
jupyterlab	4.2.1	https://jupyterlab.readthedocs.io	-
notebook	7.2.0	https://jupyter-notebook.readthedocs.io	Jupyter Notebook as a Jupyter Server extension
jupyterlab_server	2.27.1	https://jupyterlab-server.readthedocs.io	Server components for JupyterLab applications
jupyterhub	4.1.5	https://jupyterhub.readthedocs.io	Multi-user server for Jupyter notebooks

Optional extension	Version	Link	Description
jupyterlab- nvdashboard	0.10.0	https://github.com/rapidsai/jupyterlab-nvdashboard , eb-file	A JupyterLab extension for displaying dashboards of GPU usage.
jupyter-slurm- provisioner	0.6.0	https://github.com/FZJ-JSC/jupyter-slurm-provisioner , eb-file	Allows to start Jupyter kernels as a SLURM job remote from the Jupyter server
nglview	3.1.2	http://nglviewer.org/nglview/latest/ , eb-file	Jupyter widget to interactively view molecular structures and trajectories
jupyter-ai	2.15.0	https://jupyter-ai.readthedocs.io/ , eb-file	A generative AI extension for JupyterLab

Core Kernels	Version	Link	Description
Bash	0.9.3	https://github.com/takluyver/ bash_kernel , eb-file	A bash kernel for IPython
Cling (C++)	20231018	https://github.com/root-project/cling/ , eb-file	Jupyter kernel for the C++ programming language
Julia	1.9.5	https://github.com/JuliaPy/pyjulia , eb-file	python interface to julia
LFortran	0.30.0	https://lfortran.org/ , eb-file	Modern interactive LLVM-based Fortran compiler
Octave	8.4.0	https://www.octave.org/ , eb-file	Scientific Programming Language - Powerful mathematics-oriented syntax with built-in 2D/3D plotting and visualization tools
R	4.3.2	https://irkernel.github.io , eb-file	R kernel for Jupyter
Ruby	3.2.2	https://github.com/SciRuby/iruby , eb- file	Ruby kernel for Jupyter

Community Kernels	Version	Link	Description
DeepLearning	2024.3	eb-file	Python kernel incl. a collection of extra modules/packages for Deep Learning
PyEarthSystem	2024.3	eb-file	Python kernel incl. a collection of extra modules/packages for the Earth System community
QuantumComputing	2024.5	eb-file	Python kernel incl. a collection of extra modules/packages for the quantum computing community
Visualization	2024.3	eb-file	Python kernel incl. a collection of extra modules/packages for visualization

JupyterLab Applications	Version	Link	Description
Xpra	5.0.8	https://xpra.org eb-file	Remote desktop for X11 applications in the browser

Core Extensions	Version	Link	Description
jupyter-server-proxy	4.1.2	https://jupyter-server- proxy.readthedocs.io	Jupyter notebook server extension to proxy web services.
jupyterlab-lsp	5.1.0	https://github.com/jupyter-lsp/jupyterlab-lsp	Coding assistance for JupyterLab using Language Server Protocol
ipympl	0.9.4	https://matplotlib.org/ipympl/	Interactive features of matplotlib in Jupyter
ipyleaflet	0.19.1	https://ipyleaflet.readthedocs.io	Interactive maps in the Jupyter notebook
bqplot	0.13.0rc0	https://bqplot.github.io/bqplot/	Plotting library for IPython/Jupyter notebooks
jupyterlab_gitlab	4.0.0	https://github.com/jupyterlab-contrib/ jupyterlab-gitlab	A JupyterLab extension for browsing GitLab repositories
jupyterlab_git	0.50.1	https://github.com/jupyterlab/jupyterlab-git	A Git extension for JupyterLab
nbdime	4.0.1	https://nbdime.readthedocs.io/	Tools for diffing and merging of Jupyter notebooks.
jupyterlab_latex	4.0.0	https://github.com/jupyterlab/jupyterlab- latex	JupyterLab extension for live editing of LaTeX documents
plotly	5.22.0	https://plotly.com/python/	Python graphing library for interactive, publication-quality graphs.
jupyter_bokeh	4.0.4	https://github.com/bokeh/jupyter_bokeh	An extension for rendering Bokeh content in JupyterLab notebooks
panel	1.3.8	https://panel.holoviz.org/	The powerful data exploration & web app framework for Python
holoviews	1.18.3	https://holoviews.org/	With Holoviews, your data visualizes itself.
jupyterlab_h5web	12.1.0	https://github.com/silx-kit/jupyterlab- h5web	Open and explore HDF5 files in JupyterLab. Can handle very large (TB) sized files, and datasets of any dimensionality
ipyparallel	8.8.0	https://ipyparallel.readthedocs.io	IPython Parallel: Interactive Parallel Computing in Python
dask_labextension	7.0.0	https://github.com/dask/dask-labextension	JupyterLab extension for Dask
voila	0.5.7	https://voila.readthedocs.io	Voilà turns Jupyter notebooks into standalone web applications
nbdev	2.3.25	https://nbdev.fast.ai/	Create delightful software with Jupyter Notebooks
sidecar	0.7.0	https://github.com/jupyter-widgets/ jupyterlab-sidecar	A sidecar output widget for JupyterLab
dash	2.17.0	https://plotly.com/dash	Data Apps & Dashboards for Python. No JavaScript Required.
jupyterlab- spellchecker	0.8.4	https://github.com/jupyterlab-contrib/ spellchecker	Spellchecker for JupyterLab notebook markdown cells and file editor.
jupyterlab-favorites	3.2.1	https://github.com/NERSC/jupyterlab- favorites	Add the ability to save favorite folders to JupyterLab for quicker browsing
jupyterlab-resource- usage	1.0.2	https://github.com/jupyter-server/jupyter-resource-usage	JupyterLab extension to for monitoring your own resource Usage
jupyterlab-tour	4.0.1	https://github.com/jupyterlab-contrib/ jupyterlab-tour	A JupyterLab UI tour built on jupyterlab-tutorial and react-joyride.
papermill	2.5.0	https://papermill.readthedocs.io	Parameterize, execute, and analyze notebooks
pyunicore	1.0.0	https://github.com/HumanBrainProject/ pyunicore	UNICORE REST bindings for python

How to create your own Juypter Kernel

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

How to create your own Juypter Kernel

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for visualization, quantum computing

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

How to create your own Juypter Kernel

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for visualization, quantum computing

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

Building your own Jupyter kernel is a three step process

- 1.Create/Pimp new virtual Python environment venv
- 2.Create/Edit launch script for the Jupyter kernel kernel.sh
- 3.Create/Edit Jupyter kernel configuration kernel.json

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

How to create your own Juypter Kernel

Forschungszentrum

Run your Jupyter kernel configuration

Run your Jupyter Kernel

- 1. https://jupyter-jsc.fz-juelich.de
- 2. Choose system where your Jupyter kernel is installed in ~/.local/share/jupyter/kernels
- 3. Select your kernel in the launch pad or click the kernel name.

One of the many alternatives: Conda

Base your Jupyter Kernel on a Conda environment.

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_Jupyter/Fried_conda_involu-

Your kernel is independent of the software stage

in which JupyterLab is located.

Create_JupyterKernel_conda.ipynb

Create_JupyterKernel_general.ipynb

Create_JupyterKernel_pyenv.ipynb

Jupyter kernel are **NOT limited** to Python at all!

The kernel-endpoint just needs to talk the Jupyter's kernel protocol (in general over ZeroMQ). E.g.

- IRkernel for R (https://github.com/IRkernel/IRkernel)
- IJulia.jl (https://github.com/JuliaLang/IJulia.jl)

SLURM WRAPPED KERNELS WITH SLURM-PROVISIONER

REMOTE JUPYTER KERNELS

Running multiple Jupyter kernels separate on the HPC system

Kernel Provisioning enables the ability for third parties to manage the lifecycle of a kernel's runtime environment.

By implementing and configuring a *kernel provisioner*, third parties have the ability to **provision kernels for different environments**, typically managed by resource managers like Kubernetes, Hadoop YARN, Slurm, etc.

The kernel provisioner optionally extends the current **metadata stanza within the kernel.json** to include the specification of the kernel provisioner name, along with an optional config stanza

```
[..]
"metadata": {
    "kernel_provisioner": {
        "provisioner_name": "slurm-provisioner",
        "config": {
             "kernel_argv": "Python",
             "project": "zam",
             "partition": "batch",
             "nodes": 1,
             "runtime": 3600,
        }
    }
}
```

REMOTE JUPYTER KERNELS

Slurm wrapped kernels allow you to run kernels on compute nodes while your Jupyter Server runs on a login node.

This has the advantage that when your allocation on the compute node(s) ends, **only the kernel is stopped**, but your JupyterLab server keeps running. You will only have to restart the kernel, not your entire JupyterLab instance.

JUPYTER SERVER PROXY

JUPYTERLAB – WEBSERVICE PROXY

Extension: jupyter-server-proxy

JUPYTERLAB – WEBSERVICE PROXY

Extension: jupyter-server-proxy

PORT TUNNELING – WEBSERVICE PROXY

Extension: jupyter-server-proxy

Accessing Arbitrary Ports or Hosts from the Browser

If you have a web-server running on the server listening on cont, you can access it through the notebook at contebook-base/proxy/

The URL will be rewritten to remove the above prefix.

You can disable URL rewriting by using <notebook-base>/proxy/absolute/<port> so your server will receive the full URL in the request.

This works for all ports listening on the local machine.

Example:

https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<port>
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<host>:<port>

Upcoming: Support proxying to a server process via a Unix socket (#337)

JUPYTER SERVER PROXY EXAMPLES

JUPYTERLAB - REMOTE DESKTOP

Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

- 1. https://jupyter-jsc.fz-juelich.de
- 2. Click on "Xpra"

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their display to the local machine.

- Runs in a browser
- allows dis-/reconnection without disrupting the forwarded application
- https://xpra.org

The remote desktop will run on the same node as your JupyterLab does (this includes compute nodes).

It gets killed, when you stop your JupyterLab session.

Hint:

- CTRL + C -> CTRL + Insert
- CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP

Run your X11-Applications in the browser

JUPYTERLAB - MATLAB

Web-based GUI for MATLAB

MATLAB - Web-based GUI

Based on an existing connection to the HPC system, MATLAB can be accessed in the browser.

- From here- you can connect directly to the cluster [2]
- Integrates MATLAB the HPC resources into the workflow (partool) [3].

- $\hbox{[1] https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab}\\$
- $\hbox{\cite{thm}$} \hbox{\cite{thm}$} \hbox{\c$
- [3] https://de.mathworks.com/products/parallel-computing.html

JUPYTERLAB - NEST DESKTOP

Web-based GUI for Neuroscientists using NEST

NEST-Desktop

NEST Desktop is a web-based GUI application for NEST Simulator, an advanced simulation tool for the computational neuroscience.

Jupyter-JSC gives you easy access to a NEST-Desktop

With Jupyter-JSC using Jupyter-Server-Proxy authenticated & authorized users get secure access to the WebUI of NEST-Desktop running NEST-simulations on HPC.

Plugin for Jupyter-Server-Proxy: jupyter-xprahtml5-proxy https://github.com/jhgoebbert/jupyter-nestdesktop-proxy

CONCLUSION

Why Jupyter is so popular among Data Scientists

JupyterLab ...

- ... is a web-based platform for interactive computing and data analysis that is well-suited to the needs of research software engineers.
- ... provides researchers with a **comprehensive environment** for working with code, text, multimedia, and data, making it an ideal tool for a wide range of research tasks.
- ... is designed to be **flexible and customizable**, and can be modified to suit the specific needs and workflows of individual researchers.
- ... supports the creation of **reproducible research** through its support for Jupyter notebooks.
- ... supports **collaboration and sharing** of research work through its support for sharing notebooks, dashboards, and other elements of a research project.
- ... provides a wide range of **extensions and plugins**that can be used to integrate other tools and services into the environment.
- ... is an **open-source project**, which means that researchers have access to the source code and can contribute to its development.

QUESTIONS?

Training course: https://gitlab.jsc.fz-juelich.de/jupyter4jsc/training-2024.04-jupyter4hpc