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Superlinear Speed‑Up?
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The baseline case had sub‑
optimal process placement.
OpenMPI changes behaviour
for >2 processes.
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What is Pinning?
Also: Binding, Affinity,…

Force a process or thread to execute only on a given set of cores.

Increases performance predictability and absolute performance.
Enforced by the OS, driven by user space tools.
In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.
But you can (should?) take control.
We have seen as much as a gain (loss?) of 2× in bandwidth
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Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierarchy.

Shared global memory, but…
…affinity to memory partitions.

OSmanages allocation,…
…task placement, and…
…swaps tasks in and out.
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Reality is more Complex
Intel 13 gen: Raptor Lake

(Image: Fritzchens Fritz)
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Why Pinning?
Scenario 1: Task Migration

CPU 1 CPU 2

L2$ 1 L2$ 2

T1

T1

T1

T1

OS: Context Switch

Important

Swapping tasks in and out is basically free, but taskmigration leads to data migration.
Granularity is a cache line (often 128B); be aware of false sharing.
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Why Pinning?
Scenario 2: NUMA

NUMA: Non‑UniformMemory Access, ie memory performance depends on relative location.

CPU 1 CPU 2

RAM 1 RAM 2

T1 T1

T1
low

ban
dwid

th

OS: Context Switch

Important

All modern CPUs are NUMA architectures; might even have more than one NUMA domain!
Memory is actually allocated on initialisation, use same parallel configuration as consumer.
There will be no automatic migration.
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Why Pinning?
Scenario 3: Sharing Resources

CPU 1 CPU 2

RAM 1 RAM 2

T2

T2T1

T1

In some instances resources might be shared
Hardware Threads (HWT) on a core might share computational units.
Cores on a socket might share memory bandwidth, caches, …

This can lead to sub‑optimal performance by leaving some parts idle and others saturated. The
inversemight also be true, eg it might be beneficial to share caches for read‑only data.
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Why Pinning?
Scenario 4: Specialisation

Socket 1 Socket 2

GPU NIC

T2

T2

T1

T1

Accelerators/network interfaces might be attached to a specific socket.
If tasks/threads have specialised jobs, like MPI communication, …
…scheduling them close to the relevant hardware can improve performance.
Again: Beware the context switch.
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This Talk

✓ Motivation: Suboptimial and/or unpredictable performance
✓ Definition: What is pinning?
✓ Mechanism: Why does it improve performance?

Learn to know your hardware.
How to pin your processes.
How to bind your threads.
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Exploring a Node

> ml hwloc
> hwloc-ls # IMPORTANT: Run this on the *compute node*, eg via srun!
Machine (754GB total)
Package L#0

NUMANode L#0 (P#0 376GB)
L3 L#0 (28MB)
L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0

PU L#0 (P#0)
PU L#1 (P#40)

L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
PU L#2 (P#1)
PU L#3 (P#41)

[㋧㌯㍷]
HostBridge
PCIBridge

PCI 3b:00.0 (InfiniBand)
Net "ib0"
OpenFabrics "mlx5_0"

Package L#1
NUMANode L#1 (P#1 378GB)
L3 L#1 (28MB)

[㋧㌯㍷]

hwloc documentation
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https://www.open-mpi.org/projects/hwloc/


Exploring a Node
ASCII Art Edition

> hwloc-ls --output-format ascii # IMPORTANT: Run this on the *compute node*, eg via srun!
+-------------------------------------------------------------------------------------------------------------+
| Machine (504GB total) |
| +---------------------------------------------------------------------------------------------------------+ |
| | Package L#0 | |
| | +-------------------------------------------------------------------------------------------------------+ |
| | | NUMANode L#0 P#0 (252GB) | |
| | +-------------------------------------------------------------------------------------------------------+ |
| | +-----------------------------------------------+ +-----------------------------------------------+ | |
| | | L3 (16MB) | ㋧㌯㍷ | L3 (16MB) | | |
| | +-----------------------------------------------+ +-----------------------------------------------+ | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | |
| | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | | Core L#0 | | Core L#1 | | Core L#2 | | Core L#21 | | Core L#22 | | Core L#23 | | |
| | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | |
| | | | PU L#0 | | | | PU L#2 | | | | PU L#4 | | | | PU L#42 | | | | PU L#44 | | | | PU L#46 | | | |
| | | | PU L#1 | | | | PU L#3 | | | | PU L#5 | | | | PU L#43 | | | | PU L#45 | | | | PU L#47 | | | |
| | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| +---------------------------------------------------------------------------------------------------------+ |
+-------------------------------------------------------------------------------------------------------------+
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Exploring a Node
Accelerators and Network Devices

hwloc-ls --output-format=pdf > node.pdf
Machine (503GB total)

Package L#0

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#48

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#49

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#2

PU L#5
P#50

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#3

PU L#7
P#51

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#4

PU L#8
P#4

PU L#9
P#52

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#5

PU L#10
P#5

PU L#11
P#53

0.5 0.5 PCI 62:00.0

NUMANode L#0 P#0 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#6

PU L#12
P#6

PU L#13
P#54

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#7

PU L#14
P#7

PU L#15
P#55

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#8

PU L#16
P#8

PU L#17
P#56

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#9

PU L#18
P#9

PU L#19
P#57

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#10

PU L#20
P#10

PU L#21
P#58

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#22
P#11

PU L#23
P#59

32 32 32

32

32

32 PCI 43:00.0

Net ib0

OpenFabrics mlx5_0

16 PCI 44:00.0

GPU nvml1

32 PCI 45:00.0

NUMANode L#1 P#1 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#12

PU L#24
P#12

PU L#25
P#60

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#13

PU L#26
P#13

PU L#27
P#61

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#14

PU L#28
P#14

PU L#29
P#62

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#15

PU L#30
P#15

PU L#31
P#63

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#16

PU L#32
P#16

PU L#33
P#64

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#17

PU L#34
P#17

PU L#35
P#65

NUMANode L#2 P#2 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#18

PU L#36
P#18

PU L#37
P#66

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#38
P#19

PU L#39
P#67

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#20

PU L#40
P#20

PU L#41
P#68

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#21

PU L#42
P#21

PU L#43
P#69

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#22

PU L#44
P#22

PU L#45
P#70

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#46
P#23

PU L#47
P#71

32 32 32

32

32

16 PCI 03:00.0

CoProc opencl0d0
108 compute units
39 GB

CoProc cuda0
39 GB
L2 (40 MB)

GPU nvml0

32 PCI 04:00.0

Net ib1

OpenFabrics mlx5_1

32 PCI 05:00.0

NUMANode L#3 P#3 (63GB)

Package L#1

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#24

PU L#48
P#24

PU L#49
P#72

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#25

PU L#50
P#25

PU L#51
P#73

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#26

PU L#52
P#26

PU L#53
P#74

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#27

PU L#54
P#27

PU L#55
P#75

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#28

PU L#56
P#28

PU L#57
P#76

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#29

PU L#58
P#29

PU L#59
P#77

0.5 0.5

0.5

PCI e1:00.0

Net enp225s0f0

PCI e1:00.1

Net enp225s0f1

NUMANode L#4 P#4 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#30

PU L#60
P#30

PU L#61
P#78

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#31

PU L#62
P#31

PU L#63
P#79

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#32

PU L#64
P#32

PU L#65
P#80

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#33

PU L#66
P#33

PU L#67
P#81

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#34

PU L#68
P#34

PU L#69
P#82

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#35

PU L#70
P#35

PU L#71
P#83

32

32

32 32

32

32

32 PCI c3:00.0

Net ib2

OpenFabrics mlx5_2

16 PCI c4:00.0

GPU nvml3

32 PCI c5:00.0

32 PCI c8:00.0

NUMANode L#5 P#5 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#36

PU L#72
P#36

PU L#73
P#84

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#37

PU L#74
P#37

PU L#75
P#85

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#38

PU L#76
P#38

PU L#77
P#86

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#39

PU L#78
P#39

PU L#79
P#87

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#40

PU L#80
P#40

PU L#81
P#88

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#41

PU L#82
P#41

PU L#83
P#89

NUMANode L#6 P#6 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#42

PU L#84
P#42

PU L#85
P#90

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#43

PU L#86
P#43

PU L#87
P#91

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#44

PU L#88
P#44

PU L#89
P#92

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#45

PU L#90
P#45

PU L#91
P#93

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#46

PU L#92
P#46

PU L#93
P#94

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#47

PU L#94
P#47

PU L#95
P#95

32 32 32

32

32

32 PCI 83:00.0

Net ib3

OpenFabrics mlx5_3

16 PCI 84:00.0

GPU nvml2

32 PCI 85:00.0

NUMANode L#7 P#7 (63GB)

Host: jwb1244.juwels
Date: Wed Nov 18 09:02:24 2020
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Exploring a Node
Accelerators and Network Devices

Machine (503GB total)

Package L#0

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#48

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#49

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#2

PU L#5
P#50

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#3

PU L#7
P#51

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#4

PU L#8
P#4

PU L#9
P#52

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#5

PU L#10
P#5

PU L#11
P#53

0.5 0.5 PCI 62:00.0

NUMANode L#0 P#0 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#6

PU L#12
P#6

PU L#13
P#54

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#7

PU L#14
P#7

PU L#15
P#55

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#8

PU L#16
P#8

PU L#17
P#56

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#9

PU L#18
P#9

PU L#19
P#57

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#10

PU L#20
P#10

PU L#21
P#58

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#22
P#11

PU L#23
P#59

32 32 32

32

32

32 PCI 43:00.0

Net ib0

OpenFabrics mlx5_0

16 PCI 44:00.0

GPU nvml1

32 PCI 45:00.0

NUMANode L#1 P#1 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#12

PU L#24
P#12

PU L#25
P#60

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#13

PU L#26
P#13

PU L#27
P#61

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#14

PU L#28
P#14

PU L#29
P#62

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#15

PU L#30
P#15

PU L#31
P#63

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#16

PU L#32
P#16

PU L#33
P#64

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#17

PU L#34
P#17

PU L#35
P#65

NUMANode L#2 P#2 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#18

PU L#36
P#18

PU L#37
P#66

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#38
P#19

PU L#39
P#67

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#20

PU L#40
P#20

PU L#41
P#68

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#21

PU L#42
P#21

PU L#43
P#69

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#22

PU L#44
P#22

PU L#45
P#70

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#46
P#23

PU L#47
P#71

32 32 32

32

32

16 PCI 03:00.0

CoProc opencl0d0
108 compute units
39 GB

CoProc cuda0
39 GB
L2 (40 MB)

GPU nvml0

32 PCI 04:00.0

Net ib1

OpenFabrics mlx5_1

32 PCI 05:00.0

NUMANode L#3 P#3 (63GB)

Package L#1

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#24

PU L#48
P#24

PU L#49
P#72

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#25

PU L#50
P#25

PU L#51
P#73

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#26

PU L#52
P#26

PU L#53
P#74

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#27

PU L#54
P#27

PU L#55
P#75

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#28

PU L#56
P#28

PU L#57
P#76

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#29

PU L#58
P#29

PU L#59
P#77

0.5 0.5

0.5

PCI e1:00.0

Net enp225s0f0

PCI e1:00.1

Net enp225s0f1

NUMANode L#4 P#4 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#30

PU L#60
P#30

PU L#61
P#78

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#31

PU L#62
P#31

PU L#63
P#79

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#32

PU L#64
P#32

PU L#65
P#80

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#33

PU L#66
P#33

PU L#67
P#81

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#34

PU L#68
P#34

PU L#69
P#82

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#35

PU L#70
P#35

PU L#71
P#83

32

32

32 32

32

32

32 PCI c3:00.0

Net ib2

OpenFabrics mlx5_2

16 PCI c4:00.0

GPU nvml3

32 PCI c5:00.0

32 PCI c8:00.0

NUMANode L#5 P#5 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#36

PU L#72
P#36

PU L#73
P#84

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#37

PU L#74
P#37

PU L#75
P#85

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#38

PU L#76
P#38

PU L#77
P#86

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#39

PU L#78
P#39

PU L#79
P#87

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#40

PU L#80
P#40

PU L#81
P#88

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#41

PU L#82
P#41

PU L#83
P#89

NUMANode L#6 P#6 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#42

PU L#84
P#42

PU L#85
P#90

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#43

PU L#86
P#43

PU L#87
P#91

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#44

PU L#88
P#44

PU L#89
P#92

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#45

PU L#90
P#45

PU L#91
P#93

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#46

PU L#92
P#46

PU L#93
P#94

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#47

PU L#94
P#47

PU L#95
P#95

32 32 32

32

32

32 PCI 83:00.0

Net ib3

OpenFabrics mlx5_3

16 PCI 84:00.0

GPU nvml2

32 PCI 85:00.0

NUMANode L#7 P#7 (63GB)

Host: jwb1244.juwels
Date: Wed Nov 18 09:02:24 2020
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Options for Binding
Usually, a hybrid model is used: MPI tasks× threads (OpenMP/pthreads/…)

Processes
Resource Managers: SLURM,…
MPI implementations: OpenMPI, PSMPI, …
Linux: taskset, numactl, …
HWLoc CLI tools

Threads
OpenMP Environment variables (if used)
Linux Kernel API
OpenMP API (if used)
HWLoc API
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Processes: SLURM
Bind

--cpu-bind=[options] Enable binding
verbose Print binding masks.

cores|threads Use preset masks.
rank Bind tasks to CPU IDs matching to task rank.

rank_ldom Like rank, but distribute across NUMA domains.
mask_cpu=0x㌋㍓ List of bit masks, can be generated by hwloc tools.

Note: binding a process with threads still allows migration between the available HWT.

Good News!
The PinningWebtool is a great help, if not yet fully updated to recent SLURM changes. Some
options shown here are missing.
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Processes: SLURM
Distribution

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

Thematter of --exact
When srun is invoked with --exact, SLURMwill allocate as few HWT as possible to satisfy the
requested allocation. Example: srun -n 6 --exactwill use 6 HWT while srun -n 6may use 6
cores, thus allocating 6× #HWT. NB. That might actually be useful, sometimes.
The crux is in recent versions of SLURM -c|--cpus-per-task implies --exact. Youmay use
--oversubscribe to counteract this automatism.
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Processes: SLURM
Distribution II

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

slurm documentation
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Processes: SLURM
Distribution II

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

slurm documentation

Nodes, default=block
block Close; consecutive task use one node, until full, then the next.
cyclic Round‑robin; one task per node until all nodes, then start again.
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Processes: SLURM
Distribution II

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

slurm documentation

Sockets, default=cyclic
block Fill one sockect, then use the next.
cyclic Round‑robin across sockets.

fcyclic Tasks round‑robin and round‑robin cores of each task.
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Processes: SLURM
Distribution II

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

slurm documentation

Cores, default=$socket-level
block keep tasks as close together as possible
cyclic Round‑robin across CPUs.

fcyclic Tasks round‑robin and round‑robin cores of each task.
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Processes: SLURM
Recommended Usage

srun --nodes=<nodes>
--tasks-per-node=<tasks/node>
--cpus-per-task=<threads/task>
--distribution=block:cyclic:cyclic -- ./your_exe <args>

Note
–-cpus-per-task is required here if you want to set the thread count. Setting
SLURM_CPUS_PER_TASK or --cpus-per-task in your sbatch script is no longer supported.
Also, remember that --cpus-per-task implies --exact!.
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Processes: SLURM
Examples: Advanced Usage

System JUWELS Booster: NIC/GPUs attached to NUMA domains 1, 3, 5, 7
Goal 4 dedicated tasks for driving accelerators and communication each.

> # Compute masks for all HWT in the relevant NUMA domains
> numa=`hwloc-calc numa:1 numa:3 numa:5 numa:7`
> # Generate masks for the distribution of 8 tasks across these
> mask=`hwloc-distrib 8 --single --taskset --restrict $numa | xargs | tr ' ' ','`
> # Run application
> srun --cpu_bind=verbose,cpu_mask=$mask -N 1 -n 8 -c 1 -- app.exe

Warning

This example is purely educational, GPU affinity is handled by default.
Masks can be computed by hand, but keeping track of the numbering and bitsets is tedious
and errorprone. The numbering schememay change by: vendor, CPU generation, OS,…
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Processes: SLURM
JUWELS Booster Default

Just use the default if your application does not have special requirements.

srun -N 1 -n 4 --gpus=4 --cpus-per-task=12 --cpu-bind=socket -- app.exe

This does the right thing and also restricts the tasks’ visible GPUs to the closest one.
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Threads

When using threads within tasks, these can use affinity as well.
Without, threads will be mobile within the task‑level masks.
Consequently, we need to add another level of bindings…
…and take care not to conflict with task‑level masks.
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Threads: OpenMP Environment Variables
OMP_PROC_BIND=[㋧㌯㍷] Inhibit migration, bind threads to

true First location it runs on.
spread Spread over allowable set.
close Block threads together.

OMP_PLACES=[㋧㌯㍷] Bind threads to a set of places
threads Individual hardware threads
cores All HWT of a core

sockets All cores of a socket
{1, …} List of HWT ids

Migration is still allowed within a placewhen binding is not enabled.
Using threads|cores|socketswith task binding is safe.
OpenMP specification
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Summary

Be aware of your application, we cannot provide a general solution.
Binding for more performance andmore predictability.
Tools like hwloc allowmapping node topologies.
High‑level settings for performance and portability.
Example: SLURM and OpenMP.
Low‑level tools, eg hwloc‑API, for ultimate control.
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Be aware of your application, we cannot provide a general solution.
Binding for more performance andmore predictability.
Tools like hwloc allowmapping node topologies.
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Happy Pinn
ing

t.hater@fz‑juelich.d
e
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