
Introduction to Supercomputing at JSC: Hands-
On (November 2024)

Table of contents:
Introduction

Access

Getting a JSC account

Joining a compute time project

Login procedure

Generating a key pair with OpenSSH

Generating a key pair with PuTTY

Uploading the public key

Logging in with OpenSSH

Logging in with PuTTY

JupyterLab

Checking System/Service Status

Further reading

Unix shell basics

Change permissions with chmod

Symbolic mode

Numeric mode

Environment

Active project

File system points of interest

Further reading

Software Modules

Further reading

Custom software

Compiled languages

Scripting languages

Python

Transferring and archiving data

Download files from the web (supported only on login nodes!)

Transferring files and folders from/to cluster

scp

rsync

SSHFS

Alternatives

Archiving files

Budgeting

Job Accounting

Data Quotas

Running jobs

Interactive mode

One-shot

Interlude: Partitions

Interactive allocation

Batch mode

Affinity and multi-threading

JSC Affinity Tools

Further reading

LLview - Detailed Job Reporting

Currently Active Jobs

Jobs Ended Today

Jobs < 3 weeks

Live

Queue Tab

Further reading

Using GPUs

GPU Inspection During Execution

GPU Affinity

Network Architecture Study

Further reading

Useful Links

System Documentation

JSC Services

Job Reporting

Apply for Computing Time

Apply for a Data Project

JSC Course Programme

Supercomputing Support

AI

Manual software installation

Introduction

Introduction

The largest computers used for computational science have exhibited an exponential increase in the rate of

basic operations they can perform since at least the 1990s. For more than a decade, this growth has been

enabled not by increasing clock speeds of individual processing units, but by assembling systems that

consist of ever greater numbers of processing units. Scientific applications intended to run on these systems

are expected to orchestrate many of these computational units to collaborate on solving a given

computational problem. Building these kinds of applications is called parallel programming. Parallel

programming will only be touched on briefly in this course, but Jülich Supercomputing Centre (JSC) offers

several courses that teach various techniques related to the topic.

Scientists who want to run applications on these systems, be they custom made or third-party, are expected

to know how to use these systems. Working through this guide will teach you how to:

access the systems available at JSC,

navigate the file system,

find pre-installed software,

build your own software

and finally, to run software.

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://www.top500.org/statistics/perfdevel/
https://en.wikipedia.org/wiki/Dennard_scaling

Access

Access

This chapter will teach you how to log in to the systems at JSC.

Getting a JSC account

A basic prerequisite to get access to the HPC systems and other services at JSC is a JSC account. If you do

not already have an account (they have the form <family name><number> , e.g. steinbusch1), one can

be created through JSC's user portal JuDoor (click the Register button).

Joining a compute time project

To be allowed to log in to an HPC system, your JSC account needs to be a member of a computing time

project that has an active budget on the system. This is the case if

you have successfully applied for test computing time for a test project and are now the principal

investigator (PI) of your own project, or

you have successfully applied for computing time during one of our calls for project proposals and are

now the principal investigator (PI) of your own project, or

you have gained access to a project either by being invited by the PI or project administrator (PA) or by

being granted access upon requesting to join a project through JuDoor.

We have created a computing time project for this course with a project ID of training2436 . To join the

project, log in to JuDoor and click Join a project under the Projects heading. Enter the project ID and, if you

want to, a message to remind the PI/PA (one of the instructors) why you should be allowed to join the

project. Afterwards the PI/PA will be automatically informed about your join request and can add you to the

different systems available in the project. As soon as you are unlocked for the system, the system entry will

be shown on your JuDoor main page. You have to accept our Usage Agreement for the system you want to

use before you can continue with the next step.

Login procedure

Logging in to our systems is usually done through the Secure Shell (SSH) mechanism, although there are

alternatives such as UNICORE and JupyterLab. Our SSH configuration uses an authentication mechanism

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://judoor.fz-juelich.de/
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/call-for-applications-for-test-projects-with-jsc-supercomputing-and-support-resources
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/apply-for-computing-time
https://judoor.fz-juelich.de/
https://en.wikipedia.org/wiki/Secure_Shell
https://www.unicore.eu/
https://jupyter-jsc.fz-juelich.de/

based on public and private keys rather than passwords. A pair of public and private keys has to be

generated on your personal computer. The private key has to be protected by a passphrase. The public key

is then registered for access to the system through JuDoor.

CAUTION

NEVER SHARE YOUR PRIVATE KEY!!!

Several software packages can be used for logging in through SSH. The procedure is documented below for

some popular choices:

OpenSSH - a popular choice on GNU/Linux, macOS, and other Unix-like operating systems

PuTTY - a popular choice on Windows

MULTI-FACTOR AUTHENTICATION

JuDoor offers users the option to enable Multi-Factor Authentication (MFA), which adds an extra layer

of security to your account. With MFA enabled, you'll be required to provide a secondary factor of

authentication in addition to your password. For example, when logging in to JSC services, you'll be

prompted to enter a time-based one-time password (TOTP) as the second factor. In addition, JuDoor

allows users to enable MFA for SSH login. Once enabled, when accessing the ssh service on the login

hosts of the JSC system, users will be prompted to enter a 6-digit token after successfully

authenticating using the ssh public key.

To enable MFA in JuDoor please navigate to the "Account Security" page by clicking the fingerprint

icon in the navigation bar or using the account dropdown menu. There you see a list of your accounts.

You can start the setup process using the "Start MFA Setup" button. On this page you can find our

recommendations for TOTP Apps to use, but any other TOTP App should probably work just as well.

You will need to install a compatible App, scan the QR-Code with the App to add the account, and then

insert into the form both your current password and the code the App generates. After pressing

"Continue" you will be presented with 10 reset codes. These can be used to disable MFA again in case

you lose access to your second factor. You should save these at a secure location or print them.MFA

will be enabled for your account only after you have confirmed that you have saved these reset codes.

MFA is now enabled. The Fingerprint Icon in the Navigation bar now shows your MFA authentication

state. Because you have just entered a valid code, you are MFA authenticated and can continue to use

JuDoor as normal. The MFA authentication expires after 24 hours or if you open JuDoor from a

different browser/device or clear your cookies.

The following actions are secured by MFA in JuDoor and therefore a valid token is needed:

Joining a project

Adding an SSH Key

Removing an SSH Key

Changing someoneʼs access in a project if you are a PI or PA Actions that require TOTP are marked

with a fingerprint icon.

Currently, MFA is an opt-in feature (can be activated on demand). However, at some point in the future,

it will become an opt-out feature (activated by default but can be deactivated if desired).

Generating a key pair with OpenSSH

OpenSSH is a set of command line tools, so open up a terminal. We suggest you start by creating a fresh

pair of public and private keys (a key pair). To generate a key pair enter the command shown in the code

snippet below. The program asks for a passphrase. This passphrase is not used for authenticating to the

remote system, but rather acts as an encryption key for the private part of the key pair stored on the local file

system. In case the private key file is stolen by an attacker, they will not be able to use the key without

knowing the passphrase, so make sure to use one that is hard to guess.

$ ssh-keygen -a 100 -t ed25519 -f ~/.ssh/id_ed25519
Generating public/private ed25519 key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/bsteinb/.ssh/id_ed25519.
Your public key has been saved in /Users/bsteinb/.ssh/id_ed25519.pub.
The key fingerprint is:
SHA256:tHin8v4j4cyVVe2BEWAinq/vlhFExupY+37s94216uA bsteinb@zam478
The key's randomart image is:
+--[ED25519 256]--+
| .o+ o.o+. |
| . +oo |
| o+ . ..|
| =.o . .|
| = S.oo |
| . +o+o |
| .=oo+. .|
| o*+oo.. oo|
| .**+Eoo+o.|
+----[SHA256]-----+

https://en.wikipedia.org/wiki/Password_strength

If the designated output file (~/.ssh/id_ed25519) already exists, the program asks to overwrite it. This is

probably not what you want, since you might be using the key contained therein. Change the output name

by using the arguments -f ~/.ssh/id_ed25519_jsc instead of -f ~/.ssh/id_ed25519 . If you do so,

keep in mind that your keys are in a non-default location for the remainder of the course.

Print the contents of the public key to the terminal by entering:

and copy it to the clipboard (do not copy the key above! This is only an example, The one you have

generated will be different). Continue by uploading the public key to JuDoor.

Generating a key pair with PuTTY

Open puttygen.exe to generate a key pair. Select Ed25519 as the key type then click Generate and follow

the instructions of the program. Once the key has been generated, enter a strong passphrase that cannot be

guessed easily. This passphrase is used to encrypt the key while it is stored on disk so that it cannot be used

if it is stolen.

Click Save private key to save the private key to a .ppk file.

Now copy the contents of the field Public key for pasting into OpenSSH authorized_keys file to the clipboard.

$ cat ~/.ssh/id_ed25519.pub
ssh-ed25519 AAAAC3NzaC1lZDI1N [...] 6BRJMTyE4voyqJGm36P+ bsteinb@zam478

INFO

There is a known issue currently with the Windows implementation of OpenSSH. If you see the error

message

while trying to log in, please follow the guidance here.

Uploading the public key

Navigate to JuDoor and click on Manage SSH-keys next to the entry for the system you want to use under

the Systems heading. Paste the public key into the form in the field labeled Your public key and options

Corrupted MAC on input.
ssh_dispatch_run_fatal: Connection to x.x.x.x port 22: message
authentication code incorrect

https://apps.fz-juelich.de/jsc/hps/jureca/known-issues.html#mac-algorithm-related-ssh-connection-issues-from-windows

string, but do not submit yet. As a further security measure, you have to specify the systems that your log in

attempts will come from. This is done via an additional from -clause on your public key, that can contain

single IP-addresses and address ranges as well as host names and even wildcard patterns based on either

of these.

Specifying a from -clause is relatively easy if you have access to a system with a fixed IP-address or an IP-

address that changes dynamically, but comes from a range of addresses that can be specified concisely.

This is typically the case for systems which are connected to university or research centre networks (even

via VPN when working from home). For example, systems connected to the network of Forschungszentrum

Jülich will be assigned an IP-address from the range 134.94.0.0/16 , so a valid from -clause would be

from="134.94.0.0/16" . Other institutions will use different address ranges, you should be able to find

these out from your institutions network operations centre.

Sometimes, patterns based on host names will work better than those based on IP addresses. For example,

Forschungszentrum Jülich assigns host names that end in either fz-juelich.de or kfa-juelich.de ,

so a valid from -clause could also be from="*.fz-juelich.de,*.kfa-juelich.de" (notice how

multiple patterns can be combined with a comma in between). Once again, the host names assigned by

other institutions will be different. To some extent, this scheme also works for home internet access. Internet

providers typically assign IP addresses dynamically drawing from fragmented pools that are hard to specify

completely in terms of address ranges, but they often assign host names which follow a pattern that can be

found out. The command nslookup <your IP> will tell you the host name assigned to your system by

the provider (find out your IP either from the JuDoor key upload form or by asking a search engine "what is

my ip"). This host name might look something like 2909a2-ip.nrw.provider.net . Chop name

components off the beginning and replace them with * to come up with a pattern, e.g.

*.nrw.provider.net .

Add your from -clause in front of the public key you already pasted into the form. The result should be

something like:

Then click Start upload of SSH keys. It will take a little time for the key you uploaded to JuDoor to be

synched to the actual system. Eventually though, you will be able to log in. Once again, we have instructions

for

OpenSSH

PuTTY

from="134.94.0.0/16" ssh-ed25519 AAAA [...]

IPv6 connectivity update for JURECA login nodes

For users connecting from machines with a globally routed IPv6 address assigned to them, their SSH clients

will favour IPv6. This can lead to issues for users who have uploaded SSH public keys with from= clauses

based solely on IPv4 addresses or using patterns based on host names which do not match the host names

their internet provider assigns to IPv6 addresses.

The long term solution for these issues is to update your from= clauses to include patterns based on IPv6

addresses (or host names matching the IPv6 addresses).

A short term solution can be to revert to IPv4 connectivity. This can be done by connecting to a new DNS

name which will keep resolving to IPv4 addresses only: jureca-ipv4.fz-juelich.de . Another option is

to disallow IPv6 in your SSH client. For OpenSSH this can be done with the command line option -4 or the

configuration setting AddressFamily inet . In PuTTY the protocol can be overridden with the setting

'Internet protocol version' in the 'Connection' pane.

Logging in with OpenSSH

To log in with OpenSSH, enter the following command:

(Remember to change the location of the key ~/.ssh/id_ed25519 if you saved it to a non-default

location.) For example, if I wanted to log in to JUWELS Cluster it would be:

The following table lists the host names of login nodes for the different systems. Pick the one you want to

use.

System Login node host name

JURECA-DC jureca.fz-juelich.de

JUWELS Cluster juwels-cluster.fz-juelich.de

$ ssh -i ~/.ssh/id_ed25519 <account name>@<system name>.fz-juelich.de

$ ssh steinbusch1@juwels-cluster.fz-juelich.de

System Login node host name

JUWELS Booster juwels-booster.fz-juelich.de

JUSUF jusuf.fz-juelich.de

When connecting for the first time, OpenSSH will prompt you to confirm the server key fingerprint:

JSC publishes SSH fingerprints for its systems through JuDoor. You can find them on the page you used to

upload your public key. Either compare the keys or, in newer versions of OpenSSH, you can paste the

fingerprint from JuDoor into the prompt to confirm it.

Then you should see an informational message (the message of the day, MOTD) followed by a shell prompt

similar to the following:

Once you have logged in successfully, you can continue with Unix shell basics.

The authenticity of host 'jusuf.fz-juelich.de (134.94.0.184)' can't be
established.
ECDSA key fingerprint is SHA256:tuswM7JtVcWNS5wRCVIfv1h4uRHReHIN77C4zTYaPjs.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

**
* Welcome to *
* _ _ ___ _______ _ ____ *
* | | | | \ \ / / ____| | / ___| Juelich Wizard *
* _ | | | | |\ \ /\ / /| _| | | ___ \ for *
* | |_| | |_| | \ V V / | |___| |___ ___) | European Leadership *
* ___/ ___/ _/_/ |_____|_____|____/ Science *
* *
**
 2020-11-19T14:00+0200
 ### Status information JUWELS ###

Known issues: https://apps.fz-juelich.de/jsc/hps/juwels/known-issues.html

**
steinbusch1@jwlogin01:~ $

https://dispatch.fz-juelich.de:8812/HIGHMESSAGES
https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/unix-shell-basics

Logging in with PuTTY

Launch putty.exe to log in. Set the Host name for the system you want to connect to, e.g. juwels-

cluster.fz-juelich.de .

The following table lists the host names of login nodes for the different systems. Pick the one you want to

use.

System Login node host name

JURECA-DC jureca.fz-juelich.de

JUWELS Cluster juwels-cluster.fz-juelich.de

JUWELS Booster juwels-booster.fz-juelich.de

System Login node host name

JUSUF jusuf.fz-juelich.de

Navigate to Connection > SSH > Auth > Credentials and under Private key file for authentication: select the

key you just generated.

If you want to save this configuration, you can navigate back to the Session screen to give the session a

name and save it. Now click Open to connect. When you connect for the first time, PuTTY will display a

dialog like the following:

This is not an error, but a security feature. The server key fingerprint displayed in the dialog has to be verified

by comparing it to the known good fingerprint. JSC publishes SSH fingerprints for its systems through

JuDoor. You can find them on the page you used to upload your public key.

Once you have logged in successfully, you can continue with Unix shell basics.

JupyterLab

Alternatively, you can use JupyterLab to log in. The authentication credentials are the same as for JuDoor.

Once you have logged in, you need to create a JupyterLab instance by clicking Add New JupyterLab. On the

next screen you must select which system you want to log in to, what project to use for accounting and what

part of the system you want to log in to (more about this later), login nodes are the right choice for the

moment. Startup of JupyterLab may take a while, but once it is done, you can launch a terminal running a

shell on the system of your choice inside the browser. To do so, click File > New > Terminal and you should

see a shell prompt similar to this:

Checking System/Service Status

The root cause of many problems ("I cannot log in", "the system is slow") can be found by checking the JSC

status webpage. Here you will find up-to-date status information on the services JSC provides, including

upcoming planned maintenances. A traffic-light colour system is used to indicate the state of a system or

service, with green systems functioning as expected for most or all users. Yellow systems are degraded,

with issues that will impact many users. Red systems are strongly degraded which will impact most or all

[steinbusch1@jrl06 ~]$

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/unix-shell-basics
https://jupyter-jsc.fz-juelich.de/
https://status.jsc.fz-juelich.de/

users. Finally, dark-red systems are unavailable. Do not fret that you see more systems than what you have

access to, as this is a general landing page for all of our systems.

Below our cluster systems you can find information on our storage systems/tiers. If you cannot find files, a

certain mount is unavailable or the system becomes unresponsive to filesystem commands like ls this is

the place to check. Even further down is the status of the services JSC provides, like JuDoor or Jupyter-JSC.

Finally there is the status of JSC-support. Check here if you cannot reach JSC support or they do not

respond in a timely fashion, if there is no reported issue try contacting them again using a different mode of

communication, i.e. telephone or email. At the bottom of the page is a description of the traffic-light icons.

You can get further information on the degraded status of the systems and services by clicking on any of the

system names, filesystem names or services. Give it a try! There you can also see older issues to help you

diagnose problems that may have occured in the recent past.

Further reading

Our online documentation has more information on accessing the systems. It provides further examples of

from -clauses, discusses configuration of SSH clients to set up short-cuts and gives hints for

troubleshooting. If you want more details, you can find the documentation for our various systems here:

JUWELS documentation: Access

JURECA documentation: Access

JUSUF documentation: Access

https://apps.fz-juelich.de/jsc/hps/juwels/access.html
https://apps.fz-juelich.de/jsc/hps/jureca/access.html
https://apps.fz-juelich.de/jsc/hps/jusuf/access.html

Unix shell basics

Unix shell basics

Whether you log in via OpenSSH, PuTTY, or opening a Terminal in JupyterLab, you will be interacting with

the system through a Unix shell. Unix shells are text based interfaces that prompt the user to input

commands and display the result of executing those commands back to the user. The underlying concepts

(the file system, executing programs, etc.) are probably familiar to you, but the text based interface can

seem daunting at first. This section will teach you how to accomplish essential tasks on a Unix shell. If you

are already familiar with this kind of interface, you may want to skip ahead to the section describing the

environment.

Like many operating systems, Unix provides an abstraction for storage media called a file system. Data of

various types (text, images, executable code, etc.) is stored in files which can be organized in a tree-like

hierarchy of directories that starts at a single root (the "root directory"). Objects in the file system (files or

directories) are addressed using strings of characters called "paths" that list the directories one has to

traverse to get to an object plus the objects name. The slash / serves as the separator between elements

of a path and cannot itself appear in file or directory names. Some examples for paths are:

These paths are all "absolute paths", meaning, they describe the location of an objects in relation to the root

directory (which is represented by a single slash /):

etc is a directory that is found inside of the root directory

env is a file found in the directory bin which itself is found in the directory usr inside the root

directory

Documents is a directory in bsteinb which is a directory in home which is a directory in the root

directory

Since absolute paths can become unwieldy in deep directory hierarchies, Unix also allows relative paths. To

this end, every program (including the shell you are using) is executed in a "working directory" (which can be

changed during the execution of the program). Relative path specifications are then interpreted in relation to

this working directory. They are written without the initial slash / . Some examples for relative paths are:

/etc
/usr/bin/env
/home/bsteinb/Documents

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://en.wikipedia.org/wiki/Unix_shell
https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/environment

With a working directory of /usr , bin/env refers to /usr/bin/env , just like the absolute path above.

The path component .. above has a special function. It refers to the parent (the containing directory) of a

file system object and can appear in both relative and absolute paths. So ../etc/crontab refers to a file

crontab in a directory etc that can be found in the parent directory of the current working directory.

/home/bsteinb/../janedoe/.bashrc can be simplified to /home/janedoe/.bashrc .

To find out the current working directory of the shell you are using, type:

The output should be something like:

which is the "home directory" associated with your account on the system. To list the contents of the

working directory, execute the ls command:

If you are working with a fresh user account, the output of this command might be empty, because there are

no files (or only hidden files) in your home directory. To make ls display the hidden files as well, add the

optional argument -a :

The output should now be non-empty and contain files and directories with names that start with the period

. . In Unix, whether a file system item is hidden or not is determined by the first character in its name being

the period . .

Documents
bin/env
../etc/crontab

$ pwd

/p/home/jusers/steinbusch1/juwels

$ ls

$ ls -a

ls -a is our first example of a more complex command invocation. It starts with the name of a command

(so far, we have seen pwd and ls) followed by a list of arguments (here -a), all separated by spaces. ls

can be used to list the contents of any directory, by specifying the path of the directory in the last position.

To list the items in the /etc directory, type:

Most commands and the list of arguments they accept are documented in the Unix manual pages. They can

be accessed through a command – man – that takes as its only argument the name of the manual page you

want to read. For most commands there is a manual page with the same name as the command. To read the

manual page for ls , type:

You can scroll through the manual page using the arrow keys. When you are done reading, close the manual

by pressing q on the keyboard. To find manual pages for a specific topic, you can use the apropos

command which searches the library of manual pages for a given keyword.

To change the working directory of your shell and all commands you invoke subsequently, use the cd

command:

This will take you to the root directory. If you now execute ls without specifying a path, it should show you

all items in the root directory, e.g.:

Invoking cd without an argument takes you back to your home directory:

$ ls /etc

$ man ls

$ cd /

$ ls
arch bin dev gpfs lib media opt proc run selinux sys usr
arch2 boot etc home lib64 mnt p root sbin srv tmp var

$ cd
$ pwd
/p/home/jusers/steinbusch1/juwels

Alternatively, the path to your home directory is also availably as the value of an "environment variable".

Environment variables map names (strings) to values (also strings) and can be seen as implicit input to

commands while arguments on the command line are explicit inputs. The name of the environment variable

that contains the path to your home directory is HOME . Its value can be inspected using the printenv

command:

The printenv command asks the environment for the value of the variable HOME (using the getenv

function) and prints it to the terminal. In some situations it makes sense, to use the value of environment

variables as explicit arguments to a command (e.g. if you want to cd to the value of HOME). This is

supported by a shell mechanism called "variable expansion": mention the name of a variable, prefixed by the

dollar sign $ in a command line and the shell will substitute the value of the variable and pass that as an

argument to the command:

The env command can be used to inspect the environment. When invoked without any arguments it prints

a list of all variables currently defined and their values.

pwd , cd and ls let you navigate the file system. The following commands can be used to make

modifications to the file system. First is mkdir which allows you to make a directory:

To create an empty file at a given location, use:

$ printenv HOME
/p/home/jusers/steinbusch1/juwels

$ cd $HOME
$ pwd
/p/home/jusers/steinbusch1/juwels

$ env
[...]
HOME=/p/home/jusers/steinbusch1/juwels
[...]

mkdir <directory_path>

In your home directory, create two directories and a file:

You can use ls to confirm that you have created two directories next to each other, one of which contains

an empty file.

Files and directories can be moved, copied and deleted with the commands:

Make a copy of dir1 and check that it also contains file1 .

Move the copy of the file into dir2 .

touch <file_path>

$ mkdir dir1 dir2
$ touch dir1/file1

$ ls
dir1 dir2
$ ls dir1
file1
$ ls dir2

$ mv <source_path> <destination_path>
$ cp -r <source_path> <destination_path>
$ rm -r <path>

$ cp -r dir1 dir3
$ ls dir3
file1

$ mv dir3/file1 dir2
$ ls dir2
file1
$ ls dir3

Finally, remove all three directories.

Lastly, we will mention one way of editing text files: the nano editor. To open a file in nano , type:

(The module command will be explained in detail later on.)

To insert something into the file, just start typing. Save your changes by pressing CTRL-O. Exit the editor by

pressing CTRL-X . The bottom part of the terminal will display more functions which can be reached using

certain key bindings. Interaction with the editor, such as specifying a file name when saving, will also happen

here.

Change permissions with chmod

To change access permissions for files and directories one can use the chmod command. Through the ls

-l command one can display the current access rights to a file or directory, which will look as follows:

The entries from left to right are: access rights, number of files, owner (user), group, size, date of last

interaction, file or directory name. The first character in the access rights entry is either a hyphon - for files

(first line above) or d for directories (second line above), followed by three blocks of three characters each:

r , w , and x which specify the read, write, and execute access, respectively. A hyphon - then means that

access is not granted. The first block of three characters specifies the access for the user (owner, here:

zjupa1), the second for the group (that owns that file or directory, here: jusers), the third for all others.

For above examples the user has all rights, while the group and others can read and execute but not write.

Access permissions can be changed in either symbolic or numeric mode.

Symbolic mode

$ rm -r dir1 dir2 dir3
$ ls

$ module load nano
$ nano <file_path>

-rwxr-xr-x 1 zjupa1 jusers 26080 May 10 16:58 <file>
drwxr-xr-x 5 zjupa1 jusers 4096 May 11 15:52 <dir>

In the symbolic mode chmod has following syntax:

where references can be u for the user, g for the group, o for others, or a for all. The operator is either +

to give a right, - to remove a right, or = to set rights exactly as specified. Modes are the three access rights

r , w , x . Applied to above example

gives the group write rights and result to

while doing

results in

Numeric mode

The modes of access rights can also be given in a numeric notation following the syntax

For a list of numeric values and their translation to r , w , and x access rights for the user, group, and

others, as well as for further reference you can consult here.

$ chmod [references][operator][modes] <file>/<dir>

$ chmod g+w <file>

-rwxrwxr-x 1 zjupa1 jusers 26080 May 10 16:59 <file>

$ chmod ug=rx <file>

-r-xr-x--- 1 zjupa1 jusers 26080 May 10 16:59 <file>

$ chmod [numeric notation] <file>/<dir>

https://ss64.com/bash/chmod.html

Environment

Environment

Now that you know about the basic Unix commands, this section will teach you about some of the

peculiarities of the environment on the systems at JSC.

Active project

The first point to talk about is the active project. You already know about accounts and computing time

projects and by this point you should be a member of at least one project to have access to one of our

systems. However, in general, a single user account can be a member of multiple computing time ("C")

projects (and also data projects ("D")) at the same time. You can see the projects that you are currently a

member of in your user profile on JuDoor, or, if you are logged in to one of the HPC systems, you can use the

jutil command:

Certain system resources, like file system space and compute time, are associated with the projects that you

are a member of. Performing actions that consume these resources, storing files or running a computation,

have to be counted against the resource pool available to the project. This is done by storing files in certain

locations or specifying a compute time budget when running computations. It is possible to explicitly specify

a project, each time one of these actions is performed. For brevity's sake, one can also make one of the

projects the "active project" and then all actions performed in the remainder of the session will implicitly be

performed in the context of that project. This can also be done through the jutil command:

Now training2436 is the active project. Any computational jobs will be accounted against its budget and

the special file system locations associated with it can be reached through certain environment variables.

More about that in the next section.

$ jutil user projects
 project unixgroup PI-uid project-type budget-accounts
------------ ------------ ----------- ------------ ---------------
 hello hello hellopi1 D -
 chello chello hellopi1 C hello
 training00 training00 coach2 C training00

$ jutil env activate -p training2436 -A training2436

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/

HINT

In case you are working on different compute budgets we recommend to set the budget explicitly as it

is described later in the document to avoid using the "wrong" budget for a specific simulation job.

File system points of interest

Every user account on the systems has a home directory (reachable through the HOME environment

variable) where the user can store his personal files. However, there is a limit on the volume of data and also

the number of files that can be stored in this directory (see more details here). Files stored here are also

accessible only to you, which can cause issues if collaborators need them and you do not have access.

Furthermore, the file system performance in HOME is reduced. It is recommended to use HOME only for

configuration files. More storage space is granted to computing time projects. At least two directories are

created for each project:

a PROJECT directory, that can store medium amounts of data, and offers modest performance and is

backed up regularly, and

a SCRATCH directory, that offers high I/O bandwidth and should therefore be used for input and output

of computations. However, no back up of these directories is performed and files that have not been

touched in 90 days are automatically deleted.

Data projects have access to other storage locations, e.g. the tape based ARCHIVE for long term storage of

results.

The path of these directories is available as the value of environment variables of the form

<directory>_<project> , e.g. PROJECT_training2436 or SCRATCH_training2436 . If you have

activated a project in the previous section, you will also have environment variables that are just PROJECT

and SCRATCH that point to the respective directories of the active project.

Print the contents of PROJECT_training2436 and PROJECT :

Change into that directory and see what is already there:

$ printenv PROJECT_training2436
/p/project1/training2436
$ printenv PROJECT
/p/project1/training2436

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/budgeting#data-quotas

Inside the PROJECT directory, make a directory to contain the files that you work on. In order to avoid

collisions, use your account name as the name of the directory (the USER environment variable contains

your user name):

There is more information on file system points of interest in the documentation.

Further reading

Our online documentation has more information on the system environment. It describes further file systems

covering more specialised use cases and discusses transferring files to and from the systems via SSH and

Git. If you want more details, you can find the documentation for our various systems here:

JUWELS documentation: Environment

JURECA documentation: Environment

JUSUF documentation: Environment

$ cd $PROJECT_training2436
$ ls

$ mkdir $USER

https://apps.fz-juelich.de/jsc/hps/judac/faq.html
https://apps.fz-juelich.de/jsc/hps/juwels/environment.html
https://apps.fz-juelich.de/jsc/hps/jureca/environment.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/environment.html

Software Modules

Software Modules

HPC centres will usually make some effort to provide software that is commonly used for scientific

purposes. This includes compilers, parallel programming libraries like MPI, numerical libraries, and even

complete simulation programs. These software packages form a hierarchy of dependencies (simulation

programs use numerical and parallel programming libraries, and everything must be compiled with a specific

compiler). Towards the bottom of this hierarchy, packages tend to be interchangeable (several compilers for

C or Fortran, several libraries implement the MPI standard) and some of the higher up packages perform

better when compiled with a certain compiler. It therfore makes sense to offer a range of software packages

that implement low level functions and then build a software landscape upon each combination of those low

level packages. The two lowest levels in this hierarchy, compiler and MPI library together form a "toolchain".

To help keep the complexity of accessing these different collections of software in check, JSC uses a

combination of EasyBuild and Lmod to build software and make it available as software modules. During a

log in session, modules can be loaded and unloaded using the module command to use the software that

is provided by them. When you log in, a set of default modules is loaded for you, e.g. on JUWELS:

To see what other modules can currently be loaded, type:

$ module list

Currently Loaded Modules:
 1) GCCcore/.9.3.0 (H) 3) binutils/.2.34 (H)
 2) zlib/.1.2.11 (H) 4) StdEnv/2020

 Where:
 H: Hidden Module

$ module avail

-------------------------- Core packages ---------------------------
 Advisor/2020_update3
 Autotools/20200321
 Autotools/20200321 (D)

 [...]

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://easybuild.readthedocs.io/
https://lmod.readthedocs.io/

The available modules are grouped into categories:

Core packages, which are independent of the choice of toolchain

Compilers, which are the first ingredient of a toolchain

Archictectures, which can be used to load software for different processor architectures. This category

does not exist on all systems.

Go ahead and load a compiler:

If you now run module avail again, you will notice two additional software categories:

 unzip/6.0
 xpra/4.0.4-Python-3.8.5
 zsh/5.8

---------------------------- Compilers -----------------------------
 GCC/9.3.0 NVHPC/20.9-GCC-9.3.0 (g)
 Intel/2020.2.254-GCC-9.3.0 NVHPC/20.11-GCC-9.3.0 (g,D)
 NVHPC/20.7-GCC-9.3.0 (g) NVHPC/21.1-GCC-9.3.0 (g)

----------------- User-based install configuration -----------------
 UserInstallations/easybuild

 Where:
 S: Module is Sticky, requires --force to unload or purge
 g: built for GPU
 L: Module is loaded
 Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2"
will load foo/1.2.3
 D: Default Module

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

$ module load GCC

$ module avail

------------- MPI runtimes available for GNU compilers -------------

These contain modules that depend on (or were built with) the GCC module that you just loaded. Loading

one of the available MPI modules will complete your choice of a toolchain and make more software available:

If you are looking for a particular piece of software that you know the name of, rather than rummaging

through all the toolchains, you can use the module spider subcommand, as the output of module

avail suggests:

[...]

--------------- Packages compiled with GNU compilers ---------------
[...]

$ module load OpenMPI
$ module avail

------------------------- OpenMPI settings -------------------------
 mpi-settings/CUDA-low-latency mpi-settings/CUDA (L,D)

--------- Packages compiled with OpenMPI and GCC compilers ---------
[...]

$ module spider LAMMPS

--

 LAMMPS: LAMMPS/7Jan2022
--

 Description:
 LAMMPS is a classical molecular dynamics code, and an acronym for Large-
scale
 Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for
 solid-state materials (metals, semiconductors) and soft matter
(biomolecules,
 polymers) and coarse-grained or mesoscopic systems. It can be used to
model atoms
 or, more generically, as a parallel particle simulator at the atomic,
meso, or
 continuum scale. LAMMPS runs on single processors or in parallel using
 message-passing techniques and a spatial-decomposition of the simulation
domain.

Loading the LAMMPS module with OpenMPI loaded fails:

 The code is designed to be easy to modify or extend with new
functionality.

 Properties:
 Built with GPU support

 You will need to load all module(s) on any one of the lines below before
the "LAMMPS/7Jan2022" module is available to load.

 Stages/2022 GCC/11.2.0 ParaStationMPI/5.5.0-1

 Help:
 Description
 ===========
 LAMMPS is a classical molecular dynamics code, and an acronym
 for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS
has
 potentials for solid-state materials (metals, semiconductors) and soft
matter
 (biomolecules, polymers) and coarse-grained or mesoscopic systems. It
can be
 used to model atoms or, more generically, as a parallel particle
simulator at
 the atomic, meso, or continuum scale. LAMMPS runs on single processors
or in
 parallel using message-passing techniques and a spatial-decomposition of
the
 simulation domain. The code is designed to be easy to modify or extend
with new
 functionality.

 More information
 ================
 - Homepage: https://lammps.sandia.gov/
 - Site contact: Support <sc@fz-juelich.de>

$ module load LAMMPS
Lmod has detected the following error: These module(s) or

module spider with a specific module version provides details on how the module can be loaded:

extension(s) exist but cannot be loaded as requested: "LAMMPS"
 Try: "module spider LAMMPS" to see how to load the module(s).

$ module spider LAMMPS/7Jan2022

--

 LAMMPS: LAMMPS/7Jan2022
--

 Description:
 LAMMPS is a classical molecular dynamics code, and an acronym for Large-
scale
 Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for
 solid-state materials (metals, semiconductors) and soft matter
(biomolecules,
 polymers) and coarse-grained or mesoscopic systems. It can be used to
model atoms
 or, more generically, as a parallel particle simulator at the atomic,
meso, or
 continuum scale. LAMMPS runs on single processors or in parallel using
 message-passing techniques and a spatial-decomposition of the simulation
domain.
 The code is designed to be easy to modify or extend with new
functionality.

 Properties:
 Built with GPU support

 You will need to load all module(s) on any one of the lines below before
the "LAMMPS/7Jan2022" module is available to load.

 Stages/2022 GCC/11.2.0 ParaStationMPI/5.5.0-1

 Help:
 Description
 ===========
 LAMMPS is a classical molecular dynamics code, and an acronym
 for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS
has
 potentials for solid-state materials (metals, semiconductors) and soft

The problem is that LAMMPS is only available in particular toolchain which includes Stages/2022,

GCC/11.2.0, ParaStationMPI/5.5.0-1. We could simply reload the MPI module rather than having to reload the

entire toolchain, but this can sometimes come with unintended consequences, where what is loaded in a

module load command is not necessarily unloaded while swapping modules.

For this reason, we also do not recommend using the module unload command, although it is available.

We would recommend to unload (almost) all modules and start with a fresh environment, using module

purge :

The module command is part of the Lmod software package. It comes with its own help document which

you can access by running module help and a user guide is available online.

The JUWELS system is special in terms that it consist of multiple system modules (as opposed to software

modules) based on different compute technologies. The software we provide on JUWELS is also split into

different hierarchies, one per system module. As JUWELS uses different login nodes for the different system

matter
 (biomolecules, polymers) and coarse-grained or mesoscopic systems. It
can be
 used to model atoms or, more generically, as a parallel particle
simulator at
 the atomic, meso, or continuum scale. LAMMPS runs on single processors
or in
 parallel using message-passing techniques and a spatial-decomposition of
the
 simulation domain. The code is designed to be easy to modify or extend
with new
 functionality.

 More information
 ================
 - Homepage: https://lammps.sandia.gov/
 - Site contact: Support <sc@fz-juelich.de>

$ module purge
$ module load Stages/2022
$ module load GCC/11.2.0
$ module load ParaStationMPI/5.5.0-1
$ module load LAMMPS

https://lmod.readthedocs.io/

modules (Cluster and Booster), the correct software collection is loaded automatically based on which login

node you use, so we would always strongly recommend using the login nodes of the JUWELS module you

intend to compute on.

Further reading

Our online documentation has more information on software modules. It lists the basic tool chains (compiler

+ communication library + math library) available on our systems and discusses using older software stages.

If you want more details, you can find the documentation for our various systems here:

JUWELS documentation: Software Modules

JURECA documentation: Software Modules

JUSUF documentation: Software Modules

https://apps.fz-juelich.de/jsc/hps/juwels/software-modules.html
https://apps.fz-juelich.de/jsc/hps/jureca/software-modules.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/software-modules.html

Custom software

Custom software

For some, the software that is made available via the module system is enough to do their daily work. Others

will want to bring their own software to the systems. This chapter will teach you how to run software

distributed as source code for both compiled programming languages and scripting languages.

Compiled languages

For the three most common compiled languages in scientific computing, C, C++, and Fortran, the basic

workflow is very similar. Open the file hellompi.c in the nano editor (or a different editor of your choice).

(nano is available as a module, if you want to use it, type module load nano .)

Paste the following listing into the file, save and close the editor.

Once you have a compiler and an MPI library loaded (e.g. module load GCC OpenMPI), the file can be

compiled as follows:

$ nano hellompi.c

#include <stdio.h>
#include <mpi.h>

int main(int argc, char* argv[]) {
 MPI_Init(&argc, &argv);

 int r, s;
 MPI_Comm_rank(MPI_COMM_WORLD, &r);
 MPI_Comm_size(MPI_COMM_WORLD, &s);
 printf("hello from process %d of %d\n", r, s);

 MPI_Finalize();
}

$ mpicc -std=c11 -o hellompi hellompi.c

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/

We will explain how to run the program in a later chapter.

A lot of software is not compiled and installed by invoking the compiler directly, but by using a build system.

GNU make is installed from the operating system package sources and GNU autotools as well as

CMake are available as modules. More exotic build systems are also available, as are compilers for other

languages like Go or Rust.

Scripting languages

Scripting languages have become more popular in scientific computing recently. Modules are available for

Python and Julia.

Python

The Python interpreter can be loaded as a module as well as the mpi4py package that allows you to use

MPI from your Python programs.

Edit a file hellompi.py :

And paste the following content into it, then save and exit the editor.

We will explain how to run the program in a later chapter.

More Python packages are available as modules. For scientific computing, the SciPy-Stack collection is

especially interesting.

$ module load Python mpi4py

($ module load nano)
$ nano hellompi.py

from mpi4py import MPI

r = MPI.COMM_WORLD.rank
s = MPI.COMM_WORLD.size

print(f"hello from process {r} of {s}")

See also Supercomputing Environment Template using Python Virtual Environments venv to create project-

based virtual environments that leverage the already installed Python modules on our systems, which are

often significantly more performant than defaults from package managers.

https://gitlab.jsc.fz-juelich.de/kesselheim1/sc_venv_template/-/tree/master

Transferr ing and archiving data

Transferring and archiving data

With increasing supercomputing performance the data produced through simulation increases. Data

management needs to be considered for every compute time project. In some workflows it could be

necessary to get access to storage technology with improved I/O bandwidth. At JSC there are several

storage technologies serving different needs. Access is granted for some of the storage technologies

through application for a data project which can be submitted at any time. For large data transfers to or from

the supercomputer infrastructure at JSC the system JUDAC with the address judac.fz-juelich.de

delivers maximal bandwidth performance.

Download files from the web (supported only on login nodes!)

WARNING

This option supported only on the login nodes!

Only login nodes have a connection to the internet, and allow for file downloads and interactions with git or

other version control repositories hosted outside the JSC GPFS. This is not supported on compute nodes.

wget is a simple file downloader that allows downloading files using HTTP, HTTPS, and FTP protocols.

wget supports a number of options allowing to download multiple files, resume downloads, limit the

bandwidth, recursive downloads, download in the background, etc.

Here is the typical syntax

Transferring files and folders from/to cluster

scp

scp allows to copy files over a secure, encrypted network connection. As scp command uses SSH to

transfer data, it requires a password for authentication.

$ wget <url link to the file>

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://apps.fz-juelich.de/jsc/hps/just/faq.html#what-file-system-to-use-for-different-data
https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects
https://www.fz-juelich.de/en/ias/jsc/systems/storage-systems/judac

Copy file to the cluster

Download file from the cluster

To recursively copy a directory, use the -r (recursive) option.

rsync

If you already experienced with scp , you can test rsync . The rsync utility provides many advanced

features for file transfer.

The syntax is similar to scp . Here is an example of file transfer to the cluster with commonly used options

Download file from the cluster

Where

-a (archive) preserves the date and times, and permissions of the files;

-v (verbose) option gives verbose output to help monitor the transfer;

-z (compression) option compresses the file during transit to reduce size and transfer time;

-P (partial/progress) option preserves partially transferred files in case of an interruption and also

displays the progress of the transfer.

[from your laptop] $ scp [options] /path/to/file/filename <account
name>@<system name>.fz-juelich.de:/path/where/to/copy

[from your laptop] $ scp [options] <account name>@<system name>.fz-
juelich.de:/path/to/the/file /path/where/to/save

[from your laptop] $ rsync -avzP /path/to/file/filename <account name>@<system
name>.fz-juelich.de:/path/where/to/copy

[from your laptop] $ rsync -avzP <account name>@<system name>.fz-
juelich.de:/path/to/the/file /path/where/to/save

SSHFS

SSHFS allows you to mount a remote filesystem using SFTP.

To mount a remote filesytem you can do the following

Make sure that SSHFS is installed on your local machine, e.g.

Output will show where SSHFS is installed. If the result is empty, you need to install it (or tell the shell which

directories to search for executable files).

Create a directory which will be your mounting point

To mount remote directory

To unmount the filesystem

On BSD and macOS, to unmount the filesystem

Alternatives

On Windows you can use various clients, e.g. WinSCP, FileZilla, PuTTY, etc.

UFTP (UNICORE FTP) is a file transfer tool similar to Unixʼ FTP. Its main features include high-

performance file transfers from client to server (and vice versa), list directories, make/remove files or

[from your laptop] $ which sshfs

[from your laptop] $ mkdir <mountpoint>

[from your laptop] $ sshfs <account name>@<system name>.fz-
juelich.de:/path/to/directory /path/to/mounting/point

[from your laptop] $ fusermount -u <mountpoint>

[from your laptop] $ umount <mountpoint>

https://github.com/libfuse/sshfs
https://winscp.net/eng/download.php
https://filezilla-project.org/
https://apps.fz-juelich.de/jsc/hps/judac/uftp.html

directories, sync files and data sharing. In addition, users can easily share their data even with users

who do not have Unix-level access to the data.

GridFTP is an extension of FTP used within large science projects. It includes features like parallelized

FTP streams, fault tolerancy, download of portions of data and authentication and encryption for file

transfers.

Archiving files

One of the biggest problems we often encounter when transferring data between remote HPC systems is

the transfer of large numbers of files. There is an overhead involved in transferring each individual file, and

when transferring a large number of files, this overhead in combination slows down the data transfer

dramatically.

This issue can be solved by archiving multiple files into a smaller number of larger files before transferring

the data. It is also possible to combine archiving with compression to reduce the amount of data we need to

transfer, thereby speeding up the transfer. This can be done for example with tar utility.

Here is an example of archiving all data from a specific directory

Extract data from the archive

Where

-c (create) create new archive;

-v (verbose) option gives verbose output to help monitor the archiving process;

-f (file) filename of the archive;

-x (extract) extract files from an archive.

To create a compressed archive using tar we add the -z option and add the .gz extension to the file to

indicate it is compressed

$ tar -cvf <archive name>.tar /path/to/data/to/be/archived

$ tar -xvf <archive name>.tar

$ tar -czvf <archive name>.tar.gz /path/to/data/to/be/archived

https://apps.fz-juelich.de/jsc/hps/judac/gridftp.html
https://en.wikipedia.org/wiki/File_Transfer_Protocol

INFO

Please note that data compression and decompressing can take longer than transferring the un-

compressed data.

The extract compressed files from the archive you can use the same way as for uncompressed data as tar

recognizes it is compressed and decompresses and extracts at the same time.

If you have access to $ARCHIVE , data is migrated to tape for long term storage. Tape drives are relatively

slow, and retrieval of a file requires retrieval of the specific tape it is stored on. It is heavily recommended

that you archive your files by tarring them before placing them in $ARCHIVE. This will allow much more

efficient retrieval if you need these files later.

$ tar -xvf <archive name>.tar.gz

Budgeting

Budgeting

There are a large amount of users involved in using supercomputing resources. In the application phase it is

made sure that they are in need of this amount of computing resource. If every user could use unlimited

resources, compute time and/or data storage capabilities would be quickly monopolised by a few users. We

prevent this through budgeting. There are budgets on compute time, the amount of data and the number of

files stored. This ensures that every user can use a portion of the supercomputing facilities at JSC.

Job Accounting

Each computing time project has been granted a certain amount of compute time (core-hours) on an HPC

system. This budget is split monthly over the runtime of a project so that a regular project that runs for 12

months has 1/12 of the total amount of the granted core-h available each month. To allow further flexibility

we have established a "3-month-window": Core hours that have not been used in the previous month can

be used in the current month and will be lost in the next month if they are not used in the current month.

Whereby in the current month you can also use the quota of the next month but with a decreased priority of

the submitted jobs. The priority will be further decreased if you have used up the quota of the next month as

well.

CAUTION

Users are charged for complete nodes they occupy, regardless of the number of CPUs used since the

requested compute nodes for your application are not shared among users. The comute time used for

one job will be accounted by the following formula: #nodes * #AvailableCoresPerNode *

walltime .

Jobs that run on nodes equipped with GPUs are charged in the same way. Independent of the usage of the

GPUs the available cores on the host CPU node are taken into account.

Detailed information of each job can be found in KontView which is accessible via the button 'show extended

statistics' for each project in JuDoor.

Alternatively, you can execute the following command on the login nodes to query your CPU quota usage:

jutil user cpuquota . Further information can be found in the "Accounting" chapter of the

corresponding System Documentation.

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://judoor.fz-juelich.de/projects/training2436/
https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/useful-links#system-documentation

Data Quotas

There are limitations on the amount of data and the number of files (inodes) on each file system. The usage

of the data within a project is visualized in JuDoor. If you follow the links within JuDoor to KontView, more

detailed statistic on data usage are visualized.

WHAT IS AN inode ?

An inode (index node) is a data structure used in Unix file systems to store metadata about files and

directories.

It serves as a unique identifier for each file/directory on the file system. Key points about inodes

include:

Each file has an associated inode that stores its metadata, such as file type, permissions,

ownership, timestamps, and pointers to the file's data blocks on disk. Each directory also has at

least one associated inode that contains similar information.

inodes are identified by a unique number within a file system. This inode number is used by the

operating system to access the file's metadata and data blocks.

Each file system has a fixed number of inodes determined during its creation, limiting the

maximum number of files it can hold. Running out of inodes can cause issues even if disk space is

available. This is one of several reasons large numbers of small files or complex directory trees are

not ideal.

More inodes in a system can mean a longer time to look up files.

In general, large numbers of small files leads to lower performance or performance issues.

HANDY COMMANDS

View global data usage across all file systems

inode usage on all file systems

Breakdown of data usage in a directory dir (in ascending order)

df -h

df -i

https://apps.fz-juelich.de/jsc/hps/just/faq.html#what-data-quotas-do-exist-and-how-to-list-usage
https://judoor.fz-juelich.de/login

List the inode usage in a directory dir (in ascending order)

Identify the inode of a file

Identify the inode of a directory

Display the metadata of a file or directory

Applications for a data project, giving access to other data storage facilities than PROJECT or SCRATCH of

the compute time projects, can be submitted according to the information here. Applications for data

projects are processed in a rolling manner. Therefore, you can apply for a data project at any point in the life

of your compute time project, if you should see the need.

du -h --max-depth=1 <dir> | sort -h

du --inodes --max-depth=1 <dir> | sort -h

ls -il <file>

ls -idl <dir>

stat <file|directory>

https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects

Running jobs

Running jobs

Up to now, you have been working on the log in nodes of the system. These nodes are set aside for working

interactively on tasks that are needed to prepare your computations, such as compiling your applications,

moving input data into place, and writing configuration files for your programs. Since the number of log in

nodes for each system is small and they are shared between all users, we ask you to keep the resource

consumption on these systems as low as possible. Building software should be restricted to using only a few

processes in parallel, simulations and post-processing jobs should be run on the compute nodes. Use the

who command to see who else is logged in to the log in node you are currently using:

Unlike the log in nodes, users are not given free access to the compute nodes at any time. Instead they form

a pool of resources managed by the resource manager software. Due to our collaboration with the company

Partec we use "psslurm", which is based on Slurm and optimized for our systems to manage these

resources. To run a computation on the compute nodes, you have to specify to the resource manager what

amount of resources you need and for which duration. Once the resources have become available, you will

be allowed to execute programs on them. Two modes of operation are possible:

interactive mode where programs can be run on the allocated resources from a shell, possibly

repeatedly, and

batch mode where a shell script describing the commands to run as part of a computation is handed off

to the resource manager for asynchronous execution.

Interactive mode

One-shot

The srun command is used to execute commands on a set of allocated resources. If no resources are

currently allocated, srun can infer from its command line arguments what resources are needed, request

them from the resource manager and defer the execution of the associated commands until the resources

$ who
steinbusch1 pts/71 2021-03-11 09:51 (pool-148-54.vpn.kfa-juelich.de)
[...]
$ who | wc -l
59

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://www.par-tec.com/
https://slurm.schedmd.com/documentation.html

are available. After the associated commands have been run, the resources are relinquished and running

further commands will have to ask for resources again. This one-shot mode can be useful when you want to

interactively run a few quick jobs with varying sets of resources allocated for them. Run the hostname

command to see how srun will run commands on different nodes than the log in nodes. The hostname

command lets you see or change the name of your computer (e.g. name of the login or compute node),

which is useful for recognising it on a network or setting it up for different tasks. On JURECA and JUSUF, use

this command):

WARNING

Do not forget to replace YYYYMMDD , where YYYY and MM and DD are the current year and month and

day in the Gregorian calendar, e.g. 20240522 .

For the JUWELS Cluster and JUWELS Booster, there are a few differences: The name of the reservation on

JUWELS Cluster is hands-on-cluster-YYYYMMDD and hands-on-booster-YYYYMMDD on JUWELS

Booster. To submit to JUWELS Cluster, you want to be logged in to the Cluster login nodes:

To submit to JUWELS Booster, you want to be logged in to the Booster login nodes and you have to specify

the number of GPUs you want to use

$ hostname
jrlogin09.jureca
$ srun -A training2436 --reservation hands-on-YYYYMMDD hostname
srun: job 3472578 queued and waiting for resources
srun: job 3472578 has been allocated resources
jrc0454

$ hostname
jwlogin02.juwels
$ srun -A training2436 --reservation hands-on-cluster-YYYYMMDD hostname
srun: job 9792359 queued and waiting for resources
srun: job 9792359 has been allocated resources
jwc06n213.juwels

$ hostname
jwlogin24.juwels
$ srun -A training2436 --reservation hands-on-booster-YYYYMMDD --gres gpu:4
hostname

Please keep these differences in mind if you are using JUWELS Booster, they will not be repeated in further

examples.

Invocations of the srun command have the following syntax:

Above we have seen four srun options:

-A (short for --account) to charge the resources consumed by the computation to the budget

allotted to this course (if you have used jutil env activate -A training2436 earlier on, you do

not need this).

INFO

The training account budget can be used till the end of the month. After one would need to specify

another budget from an active compute time project.

--reservation to use nodes which have been set aside for this course. For this course we have

active reservations for the following systems: JURECA, JUWELS Cluster, JUWELS Booster and JUSUF.

INFO

For JURECA and JUSUF use the following reservation: hands-on-YYYYMMDD . To work on JUWELS

Cluster or Booster modules, you have to use hands-on-cluster-YYYYMMDD or hands-on-

booster-YYYYMMDD respectively. Do not forget to replace YYYYMMDD , where YYYY and MM and DD

are the current year and month and day in the Gregorian calendar, e.g. 20240522 .

WARNING

The reservation is active only during the hands-on sessions 9�00-12�00. Outside those time slots

everything can be equally done simply removing the --reservation option altogether.

srun: job 4575092 queued and waiting for resources
srun: job 4575092 has been allocated resources
jwb0053.juwels

$ srun <srun options...> <program> <program options...>

--partition specifies which set of compute nodes to request resources from. We typically group

nodes of the same hardware type into a partition.

--gres specifies additional resources, other than compute nodes, in this case the presence of four

GPUs in the compute nodes.

For the <program> we used hostname with no arguments of its own.

To run more parallel instances of a program, increase the number of Slurm tasks using the -n option to

srun :

If you do not tell Slurm that your commands are multi-threaded (hostname is not), it will assume each task

only needs a single CPU core and pack as many as possible into a node.

INFO

Note also the --label option to srun which prefixes every line of output by a number that identifies

the task that generated the output.

Running more tasks than will fit on a single node will allocate two nodes and split the tasks between nodes:

$ srun --label -A training2436 --reservation hands-on-cluster-YYYYMMDD -n 10
hostname
srun: job 3472812 queued and waiting for resources
srun: job 3472812 has been allocated resources
8: jwc00n002.juwels
9: jwc00n002.juwels
0: jwc00n002.juwels
1: jwc00n002.juwels
6: jwc00n002.juwels
3: jwc00n002.juwels
5: jwc00n002.juwels
2: jwc00n002.juwels
7: jwc00n002.juwels
4: jwc00n002.juwels

$ srun --label -A training2436 --reservation hands-on-cluster-YYYYMMDD -n 100
hostname
srun: job 3473040 queued and waiting for resources
srun: job 3473040 has been allocated resources
 0: jwc00n007.juwels

Allocations always contain entire nodes exclusively. So your jobs should request a number of tasks that is

divisible by the number of tasks which can fit on a node to avoid losing parts of your budget. Running over

multiple nodes without intending to is also likely to degrade performance.

You can now also use srun to run the hellompi program introduced in the previous section on deploying

custom software:

Interlude: Partitions

The systems at JSC typically provide more than one pool of resources, called partitions. The resources in

the different partitions might have different hardware characteristics or cater to different use cases.

The previous examples were run on the default partition of the system you are using, batch on JUWELS

Cluster and JUSUF Cluster, booster on JUWELS Booster and dc-cpu on JURECA. You can find out what

partitions the different systems have in the documentation for JURECA, JUWELS, and JUSUF.

Of particular interest are the development partitions on each system (look for devel in their name). These

consist of a small number of nodes which are set aside to prioritise small and short jobs which are typically

run as part of development work on your application rather than production use of the system.

Try running the previous two examples using hostname on the development partition of your system by

specifying it through srun 's -p option.

WARNING

[...]
50: jwc00n008.juwels
[...]

$ srun -A training2436 --reservation hands-on-cluster-YYYYMMDD -n 5 ./hellompi
srun: job 3471349 queued and waiting for resources
srun: job 3471349 has been allocated resources
hello from process 4 of 5
hello from process 0 of 5
hello from process 3 of 5
hello from process 1 of 5
hello from process 2 of 5

https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html#slurm-partitions
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html#slurm-partitions

Remove the --reservation option, because the reservation does not include nodes from the

development partition.

We will have a look at other partitions later.

Interactive allocation

If, instead of requesting resources anew everytime you want to run a command on the compute nodes, you

want to hold on to a specific set of resources and quickly dispatch a series of commands to run on them,

you can use the salloc command in combination with srun . To do so, you specify the amount of

resources you will need for your computations when calling salloc . salloc will request these resources

from the resource manager and block until they are available. Then it will launch a new shell for you from

which you can call srun , possibly multiple times, to dispatch commands onto the allocated resources.

In the previous section you took a task-centric approach to requesting resources by using the -n command

line argument to srun to specify a number of tasks you want to run. This approach also works with

salloc -- in fact the way you specify resources is mostly the same between all different modes Slurm

supports. However, since the number of CPU cores is always rounded up to the next multiple of the number

of CPU cores in a single node, it might make sense to take a hardware centric approach to requesting

resources. Using the -N command line argument, you can request a number of nodes from the resource

manager (remember to specify --gres gpu:4 for JUWELS Booster):

At the new shell prompt, you can use srun to run commands without having to specify resources again:

$ salloc -A training2436 --reservation hands-on-cluster-YYYYMMDD -N 1
salloc: Pending job allocation 3475519
salloc: job 3475519 queued and waiting for resources
salloc: job 3475519 has been allocated resources
salloc: Granted job allocation 3475519
salloc: Waiting for resource configuration
salloc: Nodes jwc00n014 are ready for job
$

$ srun hostname
jwc00n014.juwels

By default, Slurm assumes that your program is single-threaded, but still only launches one task per

allocated node. This can be changed by specifying the CPUs per task with the -c argument.

If you want to run several commands on a node without having to go through srun each time, you can use

srun to launch a shell on the node:

WARNING

When using srun in one-shot mode, your account is charged for the time it takes to run the

associated command. With salloc your account is charged for the duration of time you spend in the

shell launched by salloc (and commands launched by that shell). Once you are done with the

allocated resources, do not forget to exit from the shell:

If the printenv SLURM_JOB_ID prints a number, then you are still inside the allocation.

Batch mode

If the system is relatively quiet and you are asking for a small amount of resources (or working on the devel

partitions), salloc or one-shot srun should allow you to work with the system more or less interactively.

Large production jobs on the other hand might have to wait an uncomfortably long time for resources and so

$ srun -c 1 hostname
jwc00n014.juwels
[...]
jwc00n014.juwels

$ srun --pty --cpu-bind=none /bin/bash
$ hostname
jwc00n014.juwels
$ exit

$ exit
salloc: Relinquishing job allocation 3475519
salloc: Job allocation 3475519 has been revoked.
$ printenv SLURM_JOB_ID
$

running them interactively is not really convenient. Imagine you salloc a large number of nodes and while

you wait you decide to go have lunch. If the allocation comes through while you are away you will still be

charged for the resources even if they idle.

Also, if the systems were only used interactively, resource utilization would drop off in the late hours of the

evening and ramp up in the mornings.

To enable better resource utilization and allow users to schedule jobs asynchronously, Slurm offers a batch

mode through the sbatch command. It too requests resources from the resource manager, but unlike

salloc which presents you with an interactive shell prompt from which you can call srun , sbatch runs

commands from a shell script (the "job script") without needing user intervention. The resources can be

specified as command line arguments to sbatch , same as with salloc and srun , but can also be

described in the job script. Open a new shell script in the editor:

And enter the following script:

WARNING

Always use the same software stack (e.g. compiler, MPI) that was used to build the software to ensure

compatibility and optimal performance. Different versions can cause errors or degrade performance.

Remember to specify gpu:4 gres for JUWELS Booster.

($ module load nano)
$ nano testjob.sh

#!/bin/bash
#SBATCH --account=training2436
#SBATCH --reservation=hands-on-cluster-YYYYMMDD
#SBATCH --nodes=2
#SBATCH --cpus-per-task=1
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:05:00

module load GCC ParaStationMPI

srun ./hellompi

Then save the script and submit it for execution with:

After the first line (the shebang line) the script contains specially formatted comments that act like

arguments to sbatch . These arguments are written in their long form. Previously, you used the short form

(e.g. -N is the same as --nodes). After the block of comments come regular shell commands. Inside the

job script, we use the module command to make the software modules needed by the job programs

available (here the compiler with its runtime libraries and an MPI library). The tasks are once again created

using the srun command which works the same as before.

The job created by sbatch has to wait in a queue until the necessary resources become available. Use the

squeue command to inspect the queue:

TIP

You can use the watch squeue command, which continuously updates and displays information

about the status of jobs. It refreshes the output at regular intervals, allowing you to monitor changes in

real time.

To exit watch squeue you can press Ctrl + C . This command interrupts the execution of watch

and you return to the regular command prompt.

You might have to wait for a while, but eventually your job will be run. While your job is pending in the queue

or already running you can execute another command to retrieve further information about your job:

Once it is running, you will find two files next to the job script, mpi-err.XXXXXXX and mpi-out.XXXXXXX

where X are decimal digits. These contain what was written to the standard error and output streams by

$ sbatch testjob.sh
Submitted batch job 3476793

$ squeue -u $USER
 JOBID PARTITION NAME USER ST TIME NODES
NODELIST(REASON)
 3476793 batch testjob. steinbus PD 0:00 2 (Priority)

$ scontrol show job <JOBID>

https://de.wikipedia.org/wiki/Shebang

your job. Should you need access to the hardware during job execution check out the sgoto --help

command to log into a compute node during job execution.

Affinity and multi-threading

Computers today are typically equipped with multi-core CPUs which can work on multiple streams of

instructions at the same time. The operating system is in charge of deciding which program gets to use

which CPU core at a given point in time. Usually, it will let those programs which need access to resources

run wherever resources are available, meaning one and the same program can end up using different CPU

cores at different points in time. On a desktop machine this is not a problem. In fact it is a good thing, since

we typically run far more programs than we have CPU cores available.

In an HPC setting things are different in that the workloads are adapted to use a number of processes or

threads which matches the number of CPU cores (normally, you will have n_processes x n_threads =

n_nodes x n_CPU_cores_per_node). If there is exactly one process or thread per CPU core, it would be

wasteful to shuffle them around between different CPU cores. In order to avoid this shuffling, the resource

manager assigns to the processes that it spawns an affinity mask. An affinity mask is a set of numbers

identifying the CPU cores a process is allowed to use. By default, Slurm assumes that the processes you

create are single threaded and gives each process access to a single CPU core. Allocate a node for playing

around with this mechanism:

Use the numactl command to inspect the affinity masks created by Slurm:

$ salloc -A training2436 --reservation hands-on-cluster-YYYYMMDD -N 1
salloc: Pending job allocation 3499694
salloc: job 3499694 queued and waiting for resources
salloc: job 3499694 has been allocated resources
salloc: Granted job allocation 3499694
salloc: Waiting for resource configuration
salloc: Nodes jwc00n001 are ready for job

$ srun --label numactl --show
0: policy: default
0: preferred node: current
0: physcpubind: 0
0: cpubind: 0
0: nodebind: 0
0: membind: 0 1

The identifiers of accessible CPU cores are listed in physcpubind . Here, the single process that is created

has access to a single CPU core, 0 . Now, confirm that different processes will get access to different CPU

cores:

The three processes get access to CPU cores 0 , 1 , and 24 respectively. If your processes are not single-

threaded, you will have to give them access to more CPU cores (otherwise all threads will run on the same

CPU core). This can be done using Slurm's --cpus-per-task parameter, or -c :

$ srun --label -n 3 numactl --show
2: policy: default
2: preferred node: current
2: physcpubind: 1
2: cpubind: 0
2: nodebind: 0
2: membind: 0 1
1: policy: default
1: preferred node: current
1: physcpubind: 24
1: cpubind: 1
1: nodebind: 1
1: membind: 0 1
0: policy: default
0: preferred node: current
0: physcpubind: 0
0: cpubind: 0
0: nodebind: 0
0: membind: 0 1

$ srun --label -c 24 numactl --show
1: policy: default
1: preferred node: current
1: physcpubind: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47
1: cpubind: 1
1: nodebind: 1
1: membind: 0 1
0: policy: default
0: preferred node: current
0: physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0: cpubind: 0
0: nodebind: 0

INFO

Note how once you specify the number of CPU cores per task, Slurm switches its behavior from

creating one process per node to filling the node with as many processes as possible. Each process

gets access to 24 different CPU cores.

Copy the following small program into a file hellohybrid.c :

0: membind: 0 1
2: policy: default
2: preferred node: current
2: physcpubind: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71
2: cpubind: 0
2: nodebind: 0
2: membind: 0 1
3: policy: default
3: preferred node: current
3: physcpubind: 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
93 94 95
3: cpubind: 1
3: nodebind: 1
3: membind: 0 1

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char* argv[]) {
 MPI_Init(&argc, &argv);

 int r, s;
 MPI_Comm_rank(MPI_COMM_WORLD, &r);
 MPI_Comm_size(MPI_COMM_WORLD, &s);
 #pragma omp parallel
 if (!omp_get_thread_num())
 printf(
 "hello from process %d of %d, using %d threads\n",
 r, s, omp_get_num_threads()
);

And compile it with:

Now run the program:

Again, using default settings, Slurm creates a single process and restricts it to a single CPU core. The

OpenMP run time library supports shared-memory multiprocessing and allows to query the number of CPU

cores accessible to the process. It creates just as many threads (here only one). If you specify a number of

CPU cores per process this changes:

Once more, Slurm fills the node with four processes having appropriate affinity masks. The OpenMP run

time figures out that each process is allowed to use 24 CPU cores and creates a team of threads to fill those

CPU cores.

WARNING

Do not forget to exit your salloc session at this point.

JSC Affinity Tools

Since we are using psslurm we have implemented a few options different than the default in Slurm. For this

reason we are offering two tools that can help you to understand the process affinity on our systems:

�. The command line executable: psslurmgetbind

 MPI_Finalize();
}

$ mpicc -fopenmp -o hellohybrid hellohybrid.c

$ srun ./hellohybrid
hello from process 0 of 1, using 1 threads

$ srun -c 24 ./hellohybrid
hello from process 2 of 4, using 24 threads
hello from process 0 of 4, using 24 threads
hello from process 3 of 4, using 24 threads
hello from process 1 of 4, using 24 threads

https://en.wikipedia.org/wiki/OpenMP

�. An online pinning tool

WARNING

After the update to Slurm version 22.05, the pinning scheme has changed. The pinning tool is still

available but it does not give accurate results at the moment.

Further information can be found in the "Processor Affinity" chapter of the corresponding System

Documentation.

Further reading

Our online documentation has more information on working with the resource manager. It has detailed lists

with the hardware available in various partitions as well as job limits. Also, it discusses advanced topics like

multiple job steps, dependency chains and heterogeneous jobs. If you want more details, you can find the

documentation for our various systems here:

JUWELS documentation: Batch system

JURECA documentation: Batch system

JUSUF documentation: Batch system

You can also have a look at the official Slurm documentation.

LLview - Detailed Job Reporting

LLview is an excellent tool that provides an overview of currently running and finished jobs, including

detailed job reports plus obscure error messages that are hard to find for users. Your jobs crash and you do

not know why? This is the first place to check. There is a website for each of our large systems. You can find

the link for every system at the lower left corner of the documentation webpage of LLview. To begin check

out your system of interest, ideally one you have run jobs on.

Currently Active Jobs

When opening LLview by default it will first show you the list of your currently active jobs, either pending or

running. If you are the Principal Investigator (PI) or Project Administrator (PA) for a project and you are in the

project view you will see all active jobs from your project. Project mentors also have access to this view.

https://apps.fz-juelich.de/jsc/llview/pinning/
https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/docs/useful-links#system-documentation
https://apps.fz-juelich.de/jsc/hps/juwels/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/batchsystem.html
https://slurm.schedmd.com/documentation.html
https://apps.fz-juelich.de/jsc/llview/docu/

You filter the list based on the filters below any of the column headings. Clicking on any column heading will

cause the jobs to be sorted in ascending or descending order, an arrow will appear next to the column title

indicating either ascending (upwards-pointing arrow) or decending (downwards-pointing arrow). In the case

a of sort conflict the submission time of a job is used to resolve the conflict, with jobs that were submitted

more recently appearing above jobs that started earlier, if sorted ascending. By default jobs are sorted

according to ascending job start submit time with your most recently submitted jobs at the top.

Values in red in the list indicate that something may be wrong. For example the average load on a node may

be high. Note that this is reported in fractions of the utilization of a single core. A 1.0 therefore means that a

single core was fully utilized. This value should ideally be as close as possible to the number of cores a node

has.

Important to note is also the state of the job, which you can find on the right. The job can either be pending,

if it has been submitted, but is not yet running, or running. Sometimes it can also be completed (CMPL) or

error if the job has finished successfully or errored out respectively. These jobs will then be shortly removed

from this list.

Clicking on any of the jobs will cause the graphs to be populated at the bottom of the page if the job ran for

more than a couple of minutes, depends on how often LLview is able to query the system state. The "Load

on Node" gives you an idea of the evolution of the load placed on a node over time. The other two graphs

show the evolution of I/O bandwidth and number of I/O operations per second for various storage tiers, you

can change the storage tier by clicking on one of them in the bottom right (HOME, PROJECT, SCRATCH,

FASTDATA).

The two right-most columns can contain small pictograms, one of a chart and the other is the Adobe PDF

icon. If they are available it means that job reports are available for the jobs. The chart pictogram takes you

to a webpage-based interactive report. The PDF icon downloads a non-interactive PDF report. These

contain detailed information on the job as well as error codes. They with a textual header listing important

information regarding the job. Then, if the job ran long enough graphs of various metrics, like CPU and GPU

usage, are presented. Finally a list of nodes and error messages is included at the end. The error messages

are especially important as these can be Slurm diagnostic error messages that might be difficult for users to

find. For more information see the detailed-report documentation.

Jobs Ended Today

This is the same view as the currently active jobs view but for jobs that have finished in the last 24 hours.

Jobs < 3 weeks

https://apps.fz-juelich.de/jsc/llview/docu/detailed_reports.html

This is the same view as the currently active jobs view but for jobs that have finished in the last three weeks.

Live

Here you can see a live view of the system and how jobs are distributed across the supercomputer on a rack

level on the left. At the bottom on the left is a scheduling prediction which shows when which jobs are

expected to be scheduled. Large jobs also have their names displayed.

On the right you can see the color-coded queue of all jobs, including currently running and finalizing jobs.

Clicking on a column title sorts the list either ascending (upwards-pointing arrow) or descending

(downwards-pointing arrow).

If this tab has a drop down then you can see different queues, for example for the JUWELS cluster you will

be able to see the batch and GPU queues.

INFO

Note that only the main queues are shown. Queues like the devel queue for development are not

shown. To see these queues you will have to login to the systems and use squeue .

Queue Tab

In the queue tab you can see the queue for all partitions you can submit to. Unlike (Live) the results are not

filtered according to the partition and the queue is displayed in the typical LLview fashion.

Further reading

Here you can find the documentation for LLview.

https://apps.fz-juelich.de/jsc/llview/docu/

Using GPUs

Using GPUs

All systems at JSC have nodes which are accelerated by General Purpose Graphics Processing Units

(GPGPUs or just GPUs). In this section, we will discuss basic aspects of using them, inspecting them during

execution, assigning them to particular MPI tasks and talking a little about network architecture, which can

be important for efficient usage.

Since the GPUs are all made by NVIDIA, using them is accomplished through their CUDA SDK. CUDA is

available as a module:

This example is executed on the JUWELS booster module. To demonstrate how to compile and run a

program that uses GPUs, we will use one of the examples included in CUDA. To do this, we must additionally

load the compiler NVHPC and the MPI version ParaStationMPI .

Additionally, we load a settings module that ensures our MPI implentation is properly set up to use CUDA.

The samples directory of the CUDA installation has a number of example codes you can play and learn with.

Here we compile the example using a combination of C++, MPI and CUDA code. We load the necessary

modules, navigate into our individual user directories for this project, download sample codes from Nvidia

using git, and finally navigate into the download folder and build this software:

$ module load CUDA

$ module load NVHPC ParaStationMPI MPI-settings/CUDA
$ cd $PROJECT_training2436/$USER
$ git clone https://github.com/NVIDIA/cuda-samples.git
$ cd $PROJECT_training2436/$USER/cuda-samples/Samples/0_Introduction/simpleMPI
$ make
/p/software/jurecadc/stages/2024/software/psmpi/5.9.2-1-NVHPC-23.7-CUDA-
12/bin/mpicxx -I../../../Common -o simpleMPI_mpi.o -c simpleMPI.cpp
/p/software/jurecadc/stages/2024/software/CUDA/12/bin/nvcc -ccbin g++ -
I../../../Common -m64 --threads 0 --std=c++11 -Xcompiler -fPIE -gencode
arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode
arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode
arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode
arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode
arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90 -gencode
arch=compute_90,code=compute_90 -o simpleMPI.o -c simpleMPI.cu

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
https://docs.nvidia.com/cuda/

There should now be an executable called simpleMPI inside the simpleMPI directory. To run the

program, use srun like before:

In this command -A indicates the account that the compute time is taken from.

-p indicates the partition (a specific queue in the cluster, either a "normal" one like batch , for particular

uses like development or for particular resources, like more RAM, or GPUs).

A partition that contains nodes equipped with GPUs must be specified - -p develgpus for JUWELS and

JUSUF, -p dc-gpu-devel for JURECA, or -p develbooster for JUWELS Booster.

You must specify the number of GPUs you want the command being run within srun to have access to. -

-gres gpu:4 makes 4 GPUs available to the command being run.

It can be useful to set this differently sometimes, for example if you want to run multiple independent tasks

on each separate GPU on a node, using --gres gpu:1 , or on JUSUF, which only has a single GPU per

node on its GPU partition.

-N indicates the number of nodes, and -n the number of tasks, as before.

./simpleMPI runs the program we compiled, from the directory we are currently in.

INFO

Note: In this output nodes means MPI tasks. The developers of this code have assumed implicitly that

only one GPU with one MPI task is located on one node when creating this software.

GPU Inspection During Execution

/p/software/jurecadc/stages/2024/software/psmpi/5.9.2-1-NVHPC-23.7-CUDA-
12/bin/mpicxx -o simpleMPI simpleMPI_mpi.o simpleMPI.o -
L/p/software/jurecadc/stages/2024/software/CUDA/12/lib -
L/p/software/jurecadc/stages/2024/software/CUDA/12/lib64 -lcudart
mkdir -p ../../../bin/x86_64/linux/release
cp simpleMPI ../../../bin/x86_64/linux/release

$ srun -A training2436 -p <gpu partition> --gres gpu:4 -N 1 -n 4 ./simpleMPI
[...]
Running on 4 nodes
Average of square roots is: 0.667305
PASSED

LLview is a feature-rich tool we recommend you familiarise yourself with, to monitor your jobs and extract

most of the data relevant for many monitoring use cases with low effort from the user side. Nevertheless,

logging into the compute nodes during job execution is easy and comfortable and, in some cases,

necessary.

In the following bash session on the JUWELS booster a job is initiated through srun in the background of

this login node session (& at the end of the command).

Just hit enter after this line to retrieve the normal command line. The job is simply waiting 600 seconds or 10

minutes - we won't do any useful work, this is just to demonstrate accessing a node of a running job.

We then use sgoto to access a specific node during execution.

We then show the usage of the GPUs on that node with nvidia-smi .

This command is just to act as an example, and can be exchanged with anything you would like to do on the

compute node during job execution.

Afterwards we log out from the compute node with exit , put the executed srun command from the

background to the foreground with fg and cancel this execution by hitting CTRL-C a couple of times until

the normal command line is available.

If you want to try this example yourself, remember top change the sgoto command to the appropriate JobID,

followed by a 0 (indicating the first, and in this case only, node in the job).

$ srun -N 1 -n 1 -t 00:10:00 -A training2436 -p develbooster --gres=gpu:4 sleep
600 &
[1] 25114
srun: job 5535332 queued and waiting for resources
srun: job 5535332 has been allocated resources
$ sgoto 5535332 0
$ nvidia-smi
Thu May 12 08:49:34 2022
+---+
| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA A100-SXM... On	00000000:03:00.0 Off	0
N/A 44C P0 55W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+		
1 NVIDIA A100-SXM... On	00000000:44:00.0 Off	0
N/A 44C P0 54W / 400W	0MiB / 40960MiB	0% Default

sgoto takes the job id as the first argument and the node number within the job as the second argument

where the counting starts with 0.

nvidia-smi prints some useful information about available GPUs on a node, like temperature, memory

usage, currently running processes and power consumption.

NOTE

In the example above, nvidia-smi shows 0% utilisation because the GPUs are not being used. If

GPUs were being used, the utilisation metrics displayed by nvidia-smi would be non-zero, reflecting

the active use of GPU resources.

GPU Affinity

| | | Disabled |
+-------------------------------+----------------------+----------------------+
2 NVIDIA A100-SXM... On	00000000:84:00.0 Off	0
N/A 45C P0 58W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+		
3 NVIDIA A100-SXM... On	00000000:C4:00.0 Off	0
N/A 44C P0 58W / 400W	0MiB / 40960MiB	0% Default
		Disabled
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+
$ exit
logout
$ fg
srun -N 1 -n 1 -t 00:10:00 -A training2436 -p develbooster --gres=gpu:4 sleep
500
^Csrun: sending Ctrl-C to StepId=5535332.0
srun: forcing job termination
srun: Job step aborted: Waiting up to 6 seconds for job step to finish.

On systems with more than one GPU per node, a choice presents itself - which GPU should be visible to

which application task(s)?

This is controlled through the environment variable CUDA_VISIBLE_DEVICES , which can be set to a

comma separated list of integers identifying devices to be visible to a task.

You can manually define this variable before running your tasks with srun if the pinning is going to be the

same for every task.

Let us investigate further on this with a practical example.

First, we prepare a device query example, (remembering to reload the modules from the first example if you

are completing this in a different session).

This will create the executable deviceQueryDrv . During the execution of deviceQueryDrv all visible

CUDA devices are queried.

The following sbatch script gpuAffinityTest.sbatch , written for the JUWELS Booster, executes the

assisting bash script gpuAffinityHelper.bash which, in turn executes deviceQueryDrv .

We perform this in this manner, as we wish to get information from multiple commands inside each task, run

in parallel.

$ cd $PROJECT_training2436/$USER/cuda-
samples/Samples/1_Utilities/deviceQueryDrv/
make
/p/software/jurecadc/stages/2024/software/CUDA/12/bin/nvcc -ccbin g++ -
I../../../Common -m64 --threads 0 --std=c++11 -gencode
arch=compute_50,code=compute_50 -o deviceQueryDrv.o -c deviceQueryDrv.cpp
/p/software/jurecadc/stages/2024/software/CUDA/12/bin/nvcc -ccbin g++ -m64
-gencode arch=compute_50,code=compute_50 -o deviceQueryDrv deviceQueryDrv.o -
L/p/software/jurecadc/stages/2024/software/CUDA/12/lib64/stubs -lcuda
mkdir -p ../../../bin/x86_64/linux/release
cp deviceQueryDrv ../../../bin/x86_64/linux/release

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --time=00:01:00
#SBATCH --partition=develbooster
#SBATCH --gres=gpu:4
#SBATCH -A training2436

module load CUDA NVHPC ParaStationMPI MPI-settings/CUDA

The helper script gpuAffinityHelper.bash will be needed to print the environment variable

CUDA_VISIBLE_DEVICES for every MPI task initiated.

The automatically set environment variable SLURM_PROCID contains the current MPI task ID.

The definition of the environment variable CUDA_VISIBLE_DEVICES will be performed by you.

By uncommenting the commented line within gpuAffinityTest.bash , CUDA_VISIBLE_DEVICES can

be defined manually for every task. This allows to you to specify which GPUs are visible for which MPI tasks.

For the moment, leave it commented out.

Execute this example for ntasks=1 in gpuAffinityTest.sbatch and study the output file.

srun bash gpuAffinityHelper.bash

#!/bin/bash

#export CUDA_VISIBLE_DEVICES=<comma-separated list of visible gpus>
echo "MPI task" $SLURM_PROCID "with CUDA_VISIBLE_DEVICES ="
$CUDA_VISIBLE_DEVICES

./deviceQueryDrv

MPI task 0 with CUDA_VISIBLE_DEVICES = 0,1,2,3
./deviceQueryDrv Starting...

 CUDA Device Query (Driver API) statically linked version
 Detected 4 CUDA Capable device(s)

 Device 0: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
 [...]
 Device 1: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 68 / 0
 [...]
 Device 2: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 132 / 0
 [...]

Note the value for CUDA_VISIBLE_DEVICES at the beginning. For this single MPI task all 4 GPUs are

visible.

Additionally, we can see the Bus IDs for all of the GPUs on this node, which can be useful information but is

not important for this tutorial.

At the end of the file you can also see the successful interconnectivity tests of the GPUs.

If you do not manually define the environment variable CUDA_VISIBLE_DEVICES yourself, srun will

provide a default:

for jobs with a single task (-n 1) all devices will be visible CUDA_VISIBLE_DEVICES=0,1,2,3 to that

task.

for all other jobs, only a single device will be visible per task, with the same device being visible to

multiple tasks if there are more tasks than GPUs.

Tasks will only have access to the GPUs in the environment variable CUDA_VISIBLE_DEVICES for that

specific task.

By playing a little with the number of tasks within the scripts stated above you can study the behaviour of

the GPU pinning and confirm the default. If this default is not suited to your needs you can uncomment the

line

and define CUDA_VISIBLE_DEVICES as you wish.

Network Architecture Study

 Device 3: "NVIDIA A100-SXM4-40GB"
 [...]
 Device PCI Domain ID / Bus ID / location ID: 0 / 196 / 0
 [...]
> Peer-to-Peer (P2P) access from NVIDIA A100-SXM4-40GB (GPU0) -> NVIDIA A100-
SXM4-40GB (GPU1) : Yes
> Peer-to-Peer (P2P) access from NVIDIA A100-SXM4-40GB (GPU0) -> NVIDIA A100-
SXM4-40GB (GPU2) : Yes
[...]
Result = PASS

export CUDA_VISIBLE_DEVICES=<comma-separated list of visible gpus>

The JUWELS Booster delivers a network infrastructure allowing direct data exchange between the GPUs,

which can accelerate a workload. These GPUs have internal hardware to store data and are directly

connected to the high-performance network (other nodes, storage, etc.).

With this in mind, it becomes clear that the traditional data exchange between two GPUs, with an

intermediate hop of data on host memory, will lead to less-than-ideal performance. CUDA-awareness of an

MPI implementation is a vital part to increase data exchange performance between GPUs. On JSC

supercomputing resources there are preinstalled implementations for CUDA-aware MPI, like

ParaStationMPI and OpenMPI . To enable CUDA-awareness, you need to load the module MPI-

settings/CUDA. CUDA-awareness enables passing a pointer to data on the GPU directly to an MPI-directive.

The following example mpiBroadcasting.cpp performs three different measurements for speed of data

exchange by use of the MPI directive MPI_Bcast . MPI_Bcast broadcasts data from one MPI process to

other MPI processes. In the source code below, at first, data between host memories is exchanged.

Secondly, data between GPUs is exchanged by hopping intermediately onto the host memory. At last, data

between GPUs is exchanged by use of the direct network connection between the GPUs.

#include <stdio.h>
#include <string.h>
#include <mpi.h>
#include <time.h>

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

#include "cuda_runtime.h"

int main(int argc, char *argv[])
{
 clock_t start, end; // Time stamps
 double cpu_time_used;
 int myrank;
 int N=100000000; //# elements to broadcast per repetition
 //# broadcasting several repetitions since maximal size of
 // elements to send is restricted through MPI
 int Nbcast=20;

 double *x = new double[N]; // Allocate space on host memory
 double *d_x; // Array on device
 cudaMalloc(&d_x, N*sizeof(double)); // Allocate space on device

 for (int i=0;i<N;i++) x[i] = 1.0f; // prefilling data into allocated memory
 // send data into device
 cudaMemcpy(d_x, x, N*sizeof(double), cudaMemcpyHostToDevice);

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 // Initial unmeasured broadcasting due to
 // setup offsets in initializing connections
 for(int i=0;i<Nbcast;i++) {
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Bcast(d_x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }

 // host to host memory measurement
 start = clock(); // set the start time
 for(int i=0;i<Nbcast;i++) {
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock(); // set the end time
 // compute cpu time elapsed during the broadcasting
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all host memories \
 took %f seconds. \n", cpu_time_used);

 // device to device with intermediate copy to/from host

The initial broadcasts are needed to let the network establish connections between the MPI tasks, so it does

not make sense to measure these. Some implementations of MPI are setting up network connections

between MPI tasks only at first data exchange, to avoid setting up connections that are never required. This

is an offset which is not planned to be measured here. MPI_Barrier directs all MPI tasks to wait until all

data was broadcasted.

As a result there are three times measured and printed - host to host, GPU to GPU through the host, and

direct GPU to GPU. This example is executed on 2 nodes with 4 tasks on every node, where each task

occupies one GPU.

WARNING

 start = clock();
 for(int i=0;i<Nbcast;i++) {
 cudaMemcpy(x, d_x, N*sizeof(double), cudaMemcpyDeviceToHost);
 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 cudaMemcpy(d_x, x, N*sizeof(double), cudaMemcpyHostToDevice);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock();
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all GPUs took %f seconds \
 with intermediate copy to host memory. \n", cpu_time_used);

 // device to device through direct network connection of the GPUs
 start = clock();
 for(int i=0;i<Nbcast;i++) {
 MPI_Bcast(d_x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);
 }
 end = clock();
 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
 if (myrank == 0) printf("Broadcasting to all GPUs took %f \
 seconds. \n", cpu_time_used);

 // Release allocated memory space on host and device
 cudaFree(d_x);
 delete x;

 MPI_Finalize();
 return 0;
}

Note that we switch compiler at this stage, compared to previous instructions of this chapter.

Use the same modules for compilation which you are planning to use for execution.

The parameter -O0 deactives any optimizations performed by the compiler, which is needed since a

powerful compiler could know at compile time that the same data is initialized for all tasks and then sent

around. This could lead to a deletion of the MPI directives at compile time leading to extremely small but

erroneous time measurements. Other parts of this command are related to supplying the libraries on which

mpiBroadcasting.cpp depends.

The data exchange directly from one GPU to another GPU is the fastest. Furthermore, the CPUs on the

JUWELS Booster nodes have a relatively small compute performance, to avoid too much overhead and

unnecessary power consumption. These nodes are designed intentionally such that as much workload and

data exchange as possible should be performed by the GPUs.

You can study the source code and play around with this setup. This will give you valuable insights on how to

develop your own software for execution on the JUWELS Booster.

Further reading

Our online documentation has more information on software modules. It lists the basic tool chains (compiler

+ communication library + math library) available on our systems and discusses using older software stages.

If you want more details, you can find the documentation for our various systems here:

JUWELS documentation: GPU Computing

JURECA documentation: GPU Computing

JUSUF documentation: GPU Computing

The CUDA SDK documentation gives you detailed information about how to develop CUDA code. There are

also excellent articles in the web for learning CUDA like An Even Easier Introduction to CUDA or An

$ module load NVHPC CUDA OpenMPI
$ mpicxx -O0 -I$CUDA_HOME/include -L$CUDA_HOME/lib64 -lcudart -lcuda
mpiBroadcasting.cpp
$ srun -N 2 -n 8 -t 01:00:00 -A training2436 -p booster --gres=gpu:4 ./a.out
Broadcasting to all host memories took 4.526835 seconds.
Broadcasting to all GPUs took 7.481972 seconds with intermediate copy to host
memory.
Broadcasting to all GPUs took 2.625439 seconds.

https://apps.fz-juelich.de/jsc/hps/juwels/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jureca/gpu-computing.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/gpu-computing.html
https://docs.nvidia.com/cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

Introduction to CUDA-Aware MPI.

The JSC regularly offers CUDA courses for HPC, which are an ideal starting point to get into the topic.

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses

Useful Links

Useful Links

In this chapter, you can find a useful collection of links to get more information about several topics. The

slides of workshops held at JSC (also from this introductory workshop) you can find here. For the future, the

regularly updated master of this working document you can find here. Keep in mind that some template

words are left within the document on purpose. You will need to adjust them for your testcase.

System Documentation

JSC offers documentation for the production systems:

JUWELS

JURECA

JUSUF

JSC Services

JSC Service Status

JuDoor

Jupyter Lab

HDF Cloud

Job Reporting

The Job Reporting service gives you access to PDF reports which contain certain performance metrics that

the system automatically collects about your jobs. It also includes an overview over the system utilization

and queue. You can access the Job Reporting service for the different systems here:

JUWELS

JURECA

JUSUF

Apply for Computing Time

https://zhukov1.pages.jsc.fz-juelich.de/intro2sc-handson/2024_11/
hhttps://www.fz-juelich.de/en/ias/jsc/education/training-courses/training-materials
https://cstao-public.pages.jsc.fz-juelich.de/JSCHandsOn
https://apps.fz-juelich.de/jsc/hps/juwels/index.html
https://apps.fz-juelich.de/jsc/hps/jureca/index.html
https://apps.fz-juelich.de/jsc/hps/jusuf/index.html
https://status.jsc.fz-juelich.de/
https://judoor.fz-juelich.de/login
https://jupyter-jsc.fz-juelich.de/hub/login?next=%2Fhub%2Fhome
https://hdf-cloud.fz-juelich.de/auth/login/
https://llview.fz-juelich.de/LLweb/juwels/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jureca/jobreport/login.php
https://llview.fz-juelich.de/LLweb/jusuf/jobreport/login.php

The JSC web site describes how to apply for computing time.

The JSC web site describes how to apply for test projects.

Apply for a Data Project

The JSC web site describes how to apply for a data project.

JSC Course Programme

JSC offers many courses throughout the year covering topics such as parallel programming, machine

learning, and visualization. Please have a look at the course programme on the JSC web site.

Supercomputing Support

Our high-level support team supports the users in case of problems on our systems, e.g. porting of the

application, parallelisation and performance issues as well as usage of the HPC system. So if you are having

a question, you cannot sort out by yourself, by working through this document or by having a look into the

documentation, just drop a mail to sc@fz-juelich.de.

AI

An AI-related collection of guides and recipes can be found here.

Manual software installation

This example shows how to install software on JURECA using EasyBuild, but it

This tutorial shows how to install additional python libraries via pip

This tutorial shows how to configure a conda environment at a JSC supercomputer.

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/apply-for-computing-time
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/call-for-applications-for-test-projects-with-jsc-supercomputing-and-support-resources
https://www.fz-juelich.de/en/ias/jsc/services/data-services/data-projects
https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses
mailto:sc@fz-juelich.de
https://sdlaml.pages.jsc.fz-juelich.de/ai/
https://apps.fz-juelich.de/jsc/hps/jureca/software-modules.html#installing-your-own-software-with-easybuild
https://sdlaml.pages.jsc.fz-juelich.de/ai/guides/setup_environment/
https://sdlaml.pages.jsc.fz-juelich.de/ai/guides/conda_environment/

