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Lecture 2. Computational methods
Markov Chain Monte Carlo, Laplace approximation



Why computational methods?

Recall that in our target formula  for posterior                                                


where  are our parameters the integral below can get really nasty!


BUT: this integral is just a constant! Rewrite   , where  is just a normalising constant, 
although possibly varying over a large range.


What to do?  
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Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration. 


Assume we want to compute = 


where  is some function of parameters  given the data . 
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Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration. 


Assume we want to compute = 
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Markov Chain Monte Carlo (MCMC) algorithm

Monte Carlo integration. 


Assume we want to compute = 


 where  is some function of parameters  given the data . 


Monte Carlo integration evaluates this integral by drawing independent samples  

from posterior distribution  and then approximating     


                                                                          (law of large numbers)
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Markov Chain Monte Carlo (MCMC) algorithm

However: 

1.  can be non-standard, and hence sampling independently from it would not be feasible.


2. Good news:  does not necessarily need to be independent. One of the ways of tackling the 
above problem is to do it through a Markov chain having  as its stationary distribution. 


This is called Markov chain Monte Carlo.

p(θ |X)

{θt}
p(θ |X)



MCMC algorithm II
Markov chain. Suppose we generate a sequence of random variables . 
{θ0, θ1, …}
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the current state of the chain  and does not depend on its history .
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Hence, after sufficiently long burn-in of  iterations points of  will be samples 
from the stationary distribution and the desired integral can be re-written as
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MCMC algorithm II
Markov chain. Suppose we generate a sequence of random variables . 


Each time  the next state  is sampled from a distribution , which depends only on 
the current state of the chain  and does not depend on its history .


Subject to certain conditions the chain will gradually “forget” its initial state  and the distribution 
 will not depend on  or  and converge to a unique stationary distribution


Hence, after sufficiently long burn-in of  iterations points of  will be samples 
from the stationary distribution and the desired integral can be re-written as 




Important: We can construct an MCMC algorithm which will have  as the stationary 
distribution!
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Metropolis-Hastings sampler
At each time  the next state  is chosen by first sampling a candidate  from a 
proposal distribution  which depends only on the current state  (or not even 
that)


t θt+1 Y
q( . |θt) θt



Metropolis-Hastings sampler
At each time  the next state  is chosen by first sampling a candidate  from a 
proposal distribution  which depends only on the current state  (or not even 
that)


Candidate  is then accepted to be the next state of the chain with probability , 

where .
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Metropolis-Hastings sampler
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Metropolis-Hastings sampler
At each time  the next state  is chosen by first sampling a candidate  from a proposal 
distribution  which depends only on the current state  (or not even that)


Candidate  is then accepted to be the next state of the chain with probability , 

where . 
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Metropolis-Hastings sampler
At each time  the next state  is chosen by first sampling a candidate  from a proposal 
distribution  which depends only on the current state  (or not even that)


Candidate  is then accepted to be the next state of the chain with probability , 

where . 
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acceptance of candidate                       rejection of all possible candidates Y
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α(θ, Y) = min (1,
p(Y)p(X |Y)q(θ |Y)
p(θ)p(X |θ)q(Y |θ) )
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Metropolis-Hastings sampler II
Recall , and hence
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α(θ, Y) = min (1,
π(Y)q(θ |Y)
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The first terms on the right-hand side of (3) and (4) are equal by (2), and the second ones by equality , 
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Hint: one of the s in the equality above is equal to . Moreover, multiply (1) by 
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The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality , therefore


. Let us integrate both sides with respect to 


   Meaning: if  is from the distribution , then  will be also.  
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Metropolis-Hastings sampler II
Recall , and hence
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Hint: one of the s in the equality above is equal to . Moreover, multiply (1) by 


                       (3)           
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The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality , therefore


. Let us integrate both sides with respect to 


   Meaning: if  is from the distribution , then  will be also.  

Hence, once sample from stationary has been obtained, all subsequent samples are going to be from it. This 
means MCMC has converged. The period before convergence is called burn-in
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Metropolis-Hastings: how it works in practice

1. Start at current position .


2. Propose moving to a new position  using proposal 


3. Accept/Reject the new position based on the position's adherence to the data and prior distributions using 


• If you accept: Move to the new position . Return to Step 1.


• Else: Do not move to new position, stay at . Return to Step 1.


4. After a large number of iterations, return all accepted positions.

X

Y q(Y |X)

α(X, Y)

Y

X
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The natural question: what should be the proposal distribution ?
q(Y |θ)



Metropolis-Hastings sampler III

The natural question: what should be the proposal distribution ?


1. The rate of convergence to the stationary distribution depends on it! And hence 
the compute time.


q(Y |θ)



Metropolis-Hastings sampler III

The natural question: what should be the proposal distribution ?
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the compute time.


2. Even if the chain converged it may mix slowly (move around the states). And 
hence one needs to run it for longer to obtain reliable estimates.
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Metropolis-Hastings sampler III

The natural question: what should be the proposal distribution ?


1. The rate of convergence to the stationary distribution depends on it! And hence 
the compute time.


2. Even if the chain converged it may mix slowly (move around the states). And 
hence one needs to run it for longer to obtain reliable estimates.


3. Proposal has to explore the space efficiently, sometimes it requires to perform 
experimentation and craftsmanship to construct a good one.


Jupyter notebook 2

q(Y |θ)
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Most typical one: random walk, . 
q(Y |θ) = q( |Y − θ | )
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Typical proposal distributions

Most typical one: random walk, . 


Example: , where  is a normal distribution and  is the custom 
standard deviation


Important property: acceptance rate - how frequently the proposal gets 
accepted. Ideally should be 0.2-0.4 
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1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops 
moving.
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Typical proposal distributions

Most typical one: random walk, . 


Example: , where  is a normal distribution and  is the custom standard 
deviation


Important property: acceptance rate - how frequently the proposal gets accepted. 
Ideally should be 0.2-0.4 

This can be tuned during the burn-in period. In general:


1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops 
moving.


2. The larger the variance of the proposal is the lower the acceptance rate is.


q(Y |θ) = q( |Y − θ | )

Y ∼ N(θt, s) N s



Typical proposal distributions

Most typical one: random walk, . 


Example: , where  is a normal distribution and  is the custom standard 
deviation


Important property: acceptance rate - how frequently the proposal gets accepted. 
Ideally should be 0.2-0.4 

This can be tuned during the burn-in period. In general:


1. Acceptance too high -> chain mixes slowly. Acceptance too low -> chain stops 
moving.


2. The larger the variance of the proposal is the lower the acceptance rate is.


3. This can be used during burn-in to reach the desired acceptance rate.

q(Y |θ) = q( |Y − θ | )

Y ∼ N(θt, s) N s
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Single component MH and Gibbs sampler
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Single component MH and Gibbs sampler

Instead of updating  en bloc it is often more convenient and computationally efficient 
to divide  into components  and update them one by one. 


This means that instead of  we will have , where 
.


Acceptance probability will then be  

Gibbs sampler: . Acceptance probability in this case is 
always equals to 1! 

θ
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θ−i = {θ1…θi−1, θi+1…θh}

α(θ−i, θi, Yi) = min (1,
π(Yi |θ−i)q(θi |Yi, θ−i)
π(θi |θ−i)q(Yi |θi, θ−i) )

q(Yi |θi, θ−i) = π(Yi |θ−i)



Single component MH and Gibbs sampler

Instead of updating  en bloc it is often more convenient and computationally efficient to 
divide  into components  and update them one by one. 


This means that instead of  we will have , where 
.


Acceptance probability will then be  

Gibbs sampler: . Acceptance probability in this case is 
always equals to 1! 
Gibbs sampling uses the property of tractability of all conditional posterior distributions 
to get samples from the unknown full posterior distribution of all model variables.

θ
θ {θ1…θh}

q(Y |θ) q(Yi |θ−i, θi)
θ−i = {θ1…θi−1, θi+1…θh}

α(θ−i, θi, Yi) = min (1,
π(Yi |θ−i)q(θi |Yi, θ−i)
π(θi |θ−i)q(Yi |θi, θ−i) )

q(Yi |θi, θ−i) = π(Yi |θ−i)



Gibbs sampling scheme
Assume we have data 


1. Randomly initialize  and sample 


2. For step 


(a) Sample 


(b) Sample 


X ∼ p(X |θ1, θ2)

θ(0)
1 θ(0)

2 ∼ p(θ2 |X, θ(0)
1 )

t = 1,…, T

θ(t)
1 ∼ p(θ1 |X, θt−1

2 )

θ(t)
2 ∼ p(θ2 |X, θt

1)
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1. How to find MAP? Iterative procedure, gradient ascent. 


In pymc  function find_map which we already used in the first Jupyter notebook.


2. How to find Hessian ?: 


In pymc  function find_hessian 


However with the large number of parameters this also  becomes too computationally challenging, hence one needs 
another method


Jupyter notebook 2 Laplace approximation

∇2ln p(X, θ)

Laplace approximation 2. What is good about MAP?


