
PROGRAMMING THE NEXT GPU GENERATION
MARKUS HRYWNIAK, DEVTECH COMPUTE

TO THE NEXT 10 YEARS

Parallelism is not decreasing – quite the opposite

Core counts of CPUs and GPUs

Programming models need to keep up with new Hardware

Data Locality and Asynchronicity

CUDA: New Features and Beyond

[S41486]
Inside the NVIDIA Hopper Architecture

[S42663]
Optimizing CUDA Applications for NVIDIA

Hopper Architecture [S41489]

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41486/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42663/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41489/

INTRODUCING HOPPER

Inside the NVIDIA Hopper Architecture [S42663]

H100 Physical Architectural Features

132 Streaming Multiprocessors (SMs)

PCIe Gen5 with PCIe Atomics

HBM3 Memory with 3TB/sec Bandwidth

50MB L2 Cache

4th Generation NVLink @ 900GB/sec total bandwidth

New NVLink Switch system: Up to 256 GPUs, SHARP
in-network compute

H100 Next-Generation Capabilities

Thread Block Clusters

Distributed Shared Memory

Tensor Memory Accelerator (TMA)

Tensor Core Transformer Engine

Confidential Computing Support

Asynchronous Architecture

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42663/

Densest NVIDIA Accelerated Computing System

New NVLink Chip-to-Chip Coherent Interface

900 GB/s

Grace Hopper Superchip

NVIDIA GRACE HOPPER

Multi-Node Era
(Present → Future)

Locality-Aware Parallelism

EXPLOITING LOCALITY, EXPOSING PARALLELISM

Positional
Encoding

Positional
Encoding

Input
Embedding

Multi-Head
Attention

Feed
Forward

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Output
Embedding

PROGRAMMING TO THE HIERARCHY

Positional
Encoding

Positional
Encoding

Input
Embedding

Multi-Head
Attention

Feed
Forward

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Output
Embedding

Application level Framework level Library level Runtime level

cuTENSOR

SCALING: DATA PARALLELISM + LOCALITY OF DATA

Scheduling based on throughput

Positional
Encoding

Placement based on data reuse

HOPPER ARCHITECTURE
H100 Streaming Multiprocessor Key Features

• 256 KB combined L1 cache/Shared memory per SM. 33%
over A100

• New Thread Block Clusters and Distributed Shared
Memory

• New Tensor Memory Accelerator and Asynchronous
Transaction Barriers

• 4th Generation Tensor Core, 2x perf per clock

SOME HISTORY: THE KEPLER GK110 GPU, 2012

Kepler GK110 Full Chip

15 SMs

Tesla K20x

THE HOPPER H100 GPU, 2022

Hopper H100 Full Chip

132 SMs

9x SMs OVER 10 YEARS

Hopper H100 Full Chip

132 SMsKepler GK110
Full Chip

15 SMs

THE CUDA PROGRAMMING MODEL: GRID → BLOCKS → THREADS

Grid

of work

DIVIDE THE WORK INTO A GRID OF EQUAL BLOCKS

Grid

of work

Divide into

many Blocks

EACH BLOCK RUNS AS IF IT’S AN INDEPENDENT PROGRAM

Many Threads

in each Block

Grid

of work

Blocks

of Threads

THREAD BLOCK CLUSTER
A collective of blocks, co-scheduled on adjacent multiprocessors

Threads

Cluster

of Blocks

Blocks

of Threads

Grid

of work

TAKING ADVANTAGE OF LOCALITY AT A GPU SCALE

Thread Block Cluster

Guaranteed co-located blocks

New tier of guaranteed concurrency

Fast data exchange & sync

CLUSTER DISTRIBUTED SHARED MEMORY (DSMEM)
Blocks within a cluster are able to access each others’ shared memory directly

Full load/store/atomic access to all shared memory

between blocks within a cluster

4x2 Cluster

SM 4 SM 7SM 5 SM 6

SM 0 SM 3SM 1 SM 2

Block 0,0

Shared
Memory

Block 1,0

Shared
Memory

Block 2,0

Shared
Memory

Block 3,0

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Block 0,1 Block 1,1 Block 2,1 Block 3,1

Shared
Memory

All-to-All Shared Memory Access

EXAMPLE: HIERARCHICAL HISTOGRAM USING CLUSTER DSMEM

Histograms in CUDA are typically computed in shared memory,

followed by reductions in global memory.

For large histograms, shared memory capacity of a single block

is not sufficient.

75K Histogram bins (300KB) fit in distributed shared memory of

2-block clusters → 37.5K (150KB) per thread block

Optimizing CUDA Applications for NVIDIA Hopper Architecture [S41489]

N histogram bins in Global memory

Thread Block Cluster

Thread Block

N/2 Histogram
bins

Thread Block

N/2 Histogram
bins

Thread Block Cluster

Thread Block

N/2 Histogram
bins

Thread Block

N/2 Histogram
bins

Reductions

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41489/

THREAD AND MEMORY HIERARCHY
CUDA Thread & Memory Hierarchy pre-Hopper

Threads in the same Thread Block

• collaborate via shared memory

• are guaranteed to be co-scheduled on same SM

• can synchronize / communicate data using

▪ __syncthreads();

▪ cooperative_groups::this_thread_block.sync();

▪ cuda::barrier<thread_scope_block>
::arrive() and ::wait()

• can also perform collectives like
cooperative_groups::reduce()

Thread Block

Shared Memory

THREAD AND MEMORY HIERARCHY
CUDA Thread & Memory Hierarchy pre-Hopper

All thread blocks share global memory to collaborate

Independent thread blocks can be scheduled out of
order to improve occupancy, and hence GPU utilization

CUDA cooperative launch is required for all thread
blocks to synchronize on the GPU.

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Global Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

THREAD AND MEMORY HIERARCHY
Introducing Thread Block Clusters in Hopper

Thread Block Clusters introduce a new optional
level of hierarchy in the CUDA programming model.

Thread Blocks in a Cluster are guaranteed to be co-
scheduled on SMs in a GPU Processing Cluster (GPC)

All shared memory within a cluster forms
Distributed Shared Memory

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Global Memory

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

THREAD AND MEMORY HIERARCHY
Getting the current cluster

namespace cg = cooperative_groups;
auto block = cg::this_thread_block();
cg::cluster_group cluster = cg::this_cluster();

<..>

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Accelerated Synchronization for all threads in cluster

Cluster synchronization is accelerated in
hardware

H100 can support up to 16 thread blocks or 16384
threads per cluster

namespace cg = cooperative_groups;
auto block = cg::this_thread_block();
cg::cluster_group cluster = cg::this_cluster();

<..>

cluster.sync();

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

cluster.sync()

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Distributed Shared Memory Operations

All blocks within a thread block cluster can collaborate
using Distributed Shared Memory

Thread blocks can read, write and perform atomics on
each other’s shared memory

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

cluster.sync()

Disclaimer: Preliminary CUDA API, subject to change

Distributed Shared

Memory

THREAD AND MEMORY HIERARCHY
Distributed Shared Memory Operations

All blocks within a thread block cluster can collaborate
using Distributed shared memory

Thread blocks can read, write and perform atomics on
each other’s shared memory

// All blocks in the cluster have the variable smem
__shared__ int smem;
namespace cg = cooperative_groups;
cg::cluster_group cluster = cg::this_cluster();
unsigned int BlockRank = cluster.block_rank();
int cluster_size = cluster.dim_blocks().x;

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

cluster.sync()

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Distributed Shared Memory Operations

All blocks within a thread block cluster can collaborate
using Distributed shared memory

Thread blocks can read, write and perform atomics on
each other’s shared memory

// All blocks in the cluster have the variable smem

unsigned int BlockRank = cluster.block_rank();

// Get a pointer to peer smem variable based on
// pointer from current block
int *remote_smem = cluster.map_shared_rank(&smem,

(BlockRank + 1) % cluster_size);

if (threadIdx.x == 0)
*remote_smem = 10; // Store to remote memory

cluster.sync(); // Sync to ensure
// store is done

Disclaimer: Preliminary CUDA API, subject to change

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

cluster.sync()

THREAD AND MEMORY HIERARCHY
Launching CUDA Kernels with Clusters

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Global Memory

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Annotate kernels with compile time cluster size

Kernel launch done in classical way <<< , >>>

// Compile time: Kernel where each kernel is
// 2 Thread Blocks in X-dimension and 2 in Y-dimension.

// Requires number of thread blocks to be multiple of 4
__global__ void __cluster_dims__(2, 2, 1) clusterKernel()
{ ... }

THREAD AND MEMORY HIERARCHY
Launching CUDA Kernels with Clusters

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Global Memory

Thread Block Cluster

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Thread Block

Shared Memory

Using CUDA Extensible Kernel Launch API

// Launch via extensible launch API
{
cudaLaunchConfig_t config = {0};

cudaLaunchAttribute attribute[1];
attribute[0].id = cudaLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = 2; // 2 blocks in X
attribute[0].val.clusterDim.y = 2; // 2 blocks in Y
attribute[0].val.clusterDim.z = 1;
config.attrs = attribute;
config.numAttrs = 1;

const int clusterSize = 2 * 2;
config.gridDim = numClusters * clusterSize;
config.blockDim = numThreads;

void *params[] = {…};
cudaLaunchKernelEx(&config, (void*)clusterKernel, params);

}

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Example: Shared Memory Histogram

Histograms in CUDA are usually computed in shared memory and followed by reductions in global memory.

Thread Block

N Histogram bins

N histogram bins in Global memory

Thread Block

N Histogram bins

Reductions

Thread Block

N Histogram bins

Thread Block

N Histogram bins

Thread Block Cluster

THREAD AND MEMORY HIERARCHY
Example: Distributed Shared Memory Histogram

Histograms in CUDA are usually computed in shared memory and followed by reductions in global memory.

For large histograms, shared memory capacity is not sufficient.
Example: 300KB or 75K integer histogram bins

Distributed shared memory to the rescue.

Thread Block

N/2 Histogram bins

N histogram bins in Global memory

Thread Block

N/2 Histogram bins

Reductions

Thread Block Cluster

Thread Block

N/2 Histogram bins

Thread Block

N/2 Histogram bins

THREAD AND MEMORY HIERARCHY
Example: Distributed Shared Memory Histogram

namespace cg = cooperative_groups;
extern __shared__ int smem[];
cg::cluster_group cluster = cg::this_cluster();
unsigned int cluster_size = cluster.dim_blocks().x;

// Initialize all the pointer to DSMEM
int *sh_hist[cluster_size];
for (int i = 0; i < cluster_size; i++) {

sh_hist[i] = cluster.map_shared_rank(smem, i);
}
// Initialize Shared memory histogram to zero
for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x) {

smem[i] = 0;
}
cluster.sync();

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Example: Distributed Shared Memory Histogram

// Load input data and find histogram binid
<…>

int dst_block_rank = (int)(binid / bins_per_block);
int dst_offset = binid % bins_per_block;
atomicAdd(sh_hist[dst_block_rank] + dst_offset, 1);
cluster.sync();

// Perform Global memory reductions
<…>

Disclaimer: Preliminary CUDA API, subject to change

THREAD AND MEMORY HIERARCHY
Example: Distributed Shared Memory Histogram

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

H100 H100 - Clusters

S
p
e
e
d
 U

p

Histogram Performance

1.7x faster

75K Histogram bins (300KB) fit in distributed shared memory of

2-block cluster → 37.5K (150KB) per thread block

Disclaimer: Preliminary CUDA API, subject to change

