
MPTRAC: recent progress on Lagrangian
transport simulations on GPUs

Lars Hoffmann

Jülich Supercomputing Centre (JSC)

NVIDIA Application Lab Workshop, Jülich, 21 – 22 June 2022



Overview on MPTRAC

I Massive-Parallel Trajectory Calculations (MPTRAC)
is a Lagrangian transport model for the free troposphere
and the stratosphere.

I Eulerian versus Lagrangian modeling approach:

I Lagrangian approach has low numerical diffusion and high
spatial resolution, but it can be numerically rather costly...



Overview on MPTRAC

I Numerical integration of kinematic equation of motion:

dx
dt

= v(x, t)

I Diffusion and subgrid-scale winds are modeled as a
Markov process, for instance:

v ′i (t + ∆t) = r v ′i (t) +
√

(1− r2)σ2
vi

ξi

I Additional modules:
I boundary conditions
I convection
I dry deposition
I exponential decay

I hydroxyl chemistry
I isosurface
I sedimentation
I wet deposition



Overview on MPTRAC

I Support for different meteo input data:
I ECMWF data (ERA-Interim, ERA5, forecasts)
I NASA MERRA and MERRA-2
I NCEP/NCAR Reanalysis
I NCEP GFS forecasts

I Variety of output data:
I particle data
I grid output
I ensemble data
I profile data

I sample data
I station data
I verification data
I gnuplot interface



Overview on MPTRAC

I Features of the code:
I about 12,000 lines of C code
I required libraries: GSL, netCDF
I git repository: https://github.com/slcs-jsc/mptrac
I documentation: doxygen, wiki
I open source (GPL v3)

I Why is MPTRAC called a “massive-parallel” model?
I MPTRAC features an MPI/OpenMP/OpenACC hybrid

parallelization for use on state-of-the-art HPC systems.

I Largest simulation with 1.446 million compute processes
on Tianhe-2 supercomputer (Liu et al., 2020).



Porting to GPUs



Porting to GPUs

I Physics calculations have
been off-loaded to GPUs by
means of OpenACC.

I File I/O functions need to
interact with host CPU and
have not been offloaded.

I Simulation mostly “lives” on
GPUs. Frequent H2D or D2H
data transfers are avoided.

main();

read_ctl();

read_atm();

read_met();

module_position();

module_advection();

module_diffusion_turb();

module_diffusion_meso();

module_convection();

module_sedi();

module_isosurf();

module_meteo();

module_decay();

module_oh_chem();

module_dry_deposition();

module_wet_deposition();

module_bound_cond();

write_output();

read_met_grid();

read_met_levels();

read_met_extrapolate();

read_met_surface();

read_met_periodic();

read_met_sample();

read_met_geopot();

read_met_pv();

read_met_pbl();

read_met_tropo();

read_met_cloud();

read_met_cape();

read_met_detrend();

write_atm();

write_grid();

write_csi();

write_ens();

write_prof();

write_sample();

write_station();



Porting to GPUs
I OpenACC pragmas are used to off-load and distribute

loops over air parcels over compute elements of the GPU:



Porting to GPUs
I OpenACC pragmas for explicit data transfers:



Porting to GPUs

I In total, about 60 OpenACC pragmas are used to off-load
computation and to implement data transfers.

I Some difficulties and additional changes:
I cannot use non-GPU library functions (e. g., GSL)
I implemented cuRAND for random number generation
I some math functions are not implemented (e. g., fmod)
I bug in earlier version of the PGI compiler (large structs)

I Advantages of using OpenACC:
I easy to understand and to implement
I can keep the same code for CPU and GPU



Porting to GPUs
(a)

(b)

I Verification of transport
deviations between CPU
and GPU trajectories.

I CPU and GPU results are
not bit-identical, but
deviations during first
60 days are very small.

I Note: CPU binaries of
GNU and PGI compiler
are also not bit-identical.

I Differences likely due to
different optimization
flags at compile time.



Porting to GPUs

(a) (b)

(c) (d)

(e) (f)

I Verification of
transport
simulations using
artificial tracers.

I CPU and GPU
code use different
random number
generators
(GSL vs cuRAND).

I CPU and GPU
results agree within
statistical noise.



Porting to GPUs
(a)

(b)

I GPU scaling test with
respect to problem size
(number of air parcels).

I GPU-over-CPU speed-up
difficult to define. Here
we compare a single
GPU to 12 CPU cores on
the JUWELS Booster.

I Speed-up larger 1x for
106 particles. Speed-up
of 16x for 108 particles.



Porting to GPUs

I Timeline analysis with NVIDIA Nsight Systems:

I Performance analysis shows good CPU utilization,
but is also shows room for further improvement.



Porting to GPUs
I Multi-GPU usage is enabled via MPI parallelization:

I Each MPI task runs a separate simulation with independent
input/output data, utilizing one GPU device.

I Weak scaling test shows good scaling up to 128 MPI tasks,
but some issues with file-I/O for larger setups:



Ongoing and future work
I Recent collaboration with NVIDIA Application Lab team:

I In-depth analysis to further improve GPU code of MPTRAC
I Topic 1: implementation of asynchronous file-I/O,

meteo data preprocessing, and physics calculations
to overlap CPU and GPU workload

I Topic 2: kernel analysis of advection code (SoA→AoS and
particle sorting to optimize memory access)



Ongoing and future work
I Postdoc project by Ling Zou: Impact of temperature

fluctuations on the occurrence of polar stratospheric clouds

I Technical work: Defining efficient workflows for analyzing
large satellite data sets with MPTRAC.



Ongoing and future work
I PhD project by Jan Clemens: Identification of source

regions of the Asian Tropopause Aerosol Layer

I Technical work: How to deal best with large meteo input
data sets such as ECMWF’s ERA5 (data compression)?



Ongoing and future work
I PhD project by Mingzhao Liu: Impact of hydroxyl

chemistry, wet deposition, and convection on volcanic
sulfur dioxide transport simulations

I Technical work: Implementing new chemistry and physics
modules in MPTRAC for more realistic simulations.



Ongoing and future work

I Third-party projects using MPTRAC:
I joint Sino-German DFG-NSFC project AeroTrac
I HGF Joint Lab ExaESM activities on Lagrangian modeling
I BMBF SCALEXA and WarmWorld proposals



Thank you!
Questions?


