
Implementation of a lattice Boltzmann

method on GPU based HPC Systems

M. Waldmann1, G. Brito-Gadeschi2, M. Gondrum1,

M. Meinke1, W. Schröder1

1Institute of Aerodynamics and Chair of Fluid Mechanics,

RWTH Aachen University, Aachen, Germany

2NVIDIA GmbH, München, Germany

2

Motivation

Advantages of porting scientific codes to GPUs:

• Graphic Processing Units (GPUs) ensure very high performance for
vector and matrix calculations

• Typical calculations performed in many physical simulations

• Cost-performance ratio is typically lower for GPUs as for CPUs

• Relevance of GPUs for High-Performance Computing (HPC)
systems is continuously growing

• In the last decade, the number of GPU accelerated systems in the top 500 list
has been constantly increasing

• 6 of the 10th fastest supercomputers (June 2021) are accelerated by GPUs

Fig. 1: Supercomputer „Juwels“
(Photo: dpa/Marius Becker)

Fig. 2: Supercomputer „HAWK“
(Photo: HLRS)

3

Outline

1. Multiphysics - Aerodynamisches Institut Aachen
(m-AIA)

• The m-AIA simulation framework

• Grid generation using m-AIA

• The lattice Boltzmann method in m-AIA

2. GPU porting of the lattice Boltzmann method

• GPU-Models requirements

• Validation and Performance

3. Exemplary simulation setups

• Flow around a landing gear configuration

• Flow through a human nasal cavity

4. Conclusion and outlook

4

Multiphysics - Aerodynamisches Institut Aachen

m-AIA simulation framework:

(formerly known as ZFS)

• Several solver types are implemented to address
different physical issues:

• Finite Volume method (FV):
Fluid mechanics

• Discontinuous Galerkin method (DG):
Aeroacousics

• Level-set method (LS):
Tracking contours of flames

• Lattice Boltzmann method (LB):
Fluid mechanics

• Lagrange solver:
Particle distributions

m-AIA

Fig. 3: Structure of the m-AIA simulation framework [1]

5

Multiphysics - Aerodynamisches Institut Aachen

m-AIA simulation framework:

(formerly known as ZFS)

• m-AIA is built up modularly

• Direct-hybrid coupling of different
solvers with each other

• A wide range of physical and
numerical models

• Adaptive mesh refinement

• Dynamic load balancing

m-AIA

Fig. 3: Structure of the m-AIA simulation framework [1]

6

Grid generation using m-AIA:

• Unstructured joint-hierarchical Cartesian grid

• Massively parallel grid generator [2]

• Partitioning based on Space-filling Hilbert curve

• The length of the segments are determined by weights

Fig. 5: Octree structure of m-AIA’s grid [2] Fig. 6: Space-filling Hilbert
curve

Fig. 4: Strong scaling of the grid generation
on Hermit and Juqueen [2]

Multiphysics - Aerodynamisches Institut Aachen

7

Memory layout of m-AIA:

• Cells are numbered according to their Hilbert id
and their level of refinement

• Cell data is allocated in continuous arrays
pursuant to the Hilbert id

• Conservative variables as well as Particle
Probability Distribution Functions (PPDFs) are
stored with an Array-of-Structure layout (AoS)

• Object-oriented memory layout

• Switching to a Structure-of-Arrays (SoA) layout
allows for better vectorization

• More important for GPU implementation

Fig. 7: Memory layout of the lattice Boltzmann
solver of m-AIA

Multiphysics - Aerodynamisches Institut Aachen

8

The lattice Boltzmann method in m-AIA:

• Several formulations of the discrete Boltzmann equation are implemented

• 2D and 3D discretization models are implemented (for example the D3Q27)

• f is the Particle Probability Distribution Function (PPDF)

• 𝑓𝑖
𝑒𝑞

is the Maxwell distribution function [3]

Propagation step Collision step

𝜕𝑓

𝜕𝑡
+ ξ

𝜕𝑓

𝜕𝑥
+

𝐹

𝑚

𝜕𝑓

𝜕ξ
= Ω(𝑓)

𝑓𝑖 𝑟 + ξ𝑖 δ𝑡, 𝑡 + δ𝑡 − 𝑓𝑖 𝑟, 𝑡 =
1

τ
𝑓𝑖
𝑒𝑞

𝑟, 𝑡 − 𝑓𝑖 𝑟, 𝑡

𝑓𝑖
𝑒𝑞

= ρ 𝑡𝑝 1 +
𝑣αξα

𝑐𝑠
2 +

𝑣α𝑣β

𝑐𝑠
2

ξαξβ

𝑐𝑠
2 − δαβ

Fig. 8: D3Q27 discretization model

Multiphysics - Aerodynamisches Institut Aachen

Fig. 9: Collision and propagation step

9

GPU porting of the lattice Boltzmann method

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

Tab. 1: Comparison of different GPU-Models

GPU-Model requirements:

• Portability: Code has to run on different HPC systems (e.g. JURECA, JUWELS, HAWK)

• Maintainability: Code duplication should be avoided

• Compatibility: The GPU-Model must be compatible with our hybrid multi-threading / multi-processing
approach

10

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

GPU porting of the lattice Boltzmann method

Tab. 1: Comparison of different GPU-Models

Advantages of the parallel Standard Template Library (STL) of C++17:

• The parallel STL is implemented by all Compilers supporting C++17

• Multi-threading and multi-processing is supported

• No code duplication is needed

• No additional external libraries are needed

11

Advantages of the parallel Standard Template Library (STL) of C++17:

• The parallel STL is available for all Compilers
supporting C++17

• Multi-threading and multi-processing is
supported

• No code duplication is needed

• Execution policy used: par_unseq

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

Tab. 1: Comparison of different GPU-Models

GPU porting of the lattice Boltzmann method

12

Fig. 10: Velocity magnitude for a 3D lid-driven cavity

GPU porting of the lattice Boltzmann method

Validation and Performance:

• A 3D lid-driven cavity flow is simulated on a uniform mesh

• Different mesh resolutions are used

• Consisting of up to 2.3 billion cells

• Reynolds number is set to Re = 500

• Mach number is set to Ma = 0.1

• BGK-Collision operator with the D3Q27 model

• Interpolated Bounce-Back Scheme applied at all walls

• Simulations are conducted on CPU and GPU based systems

• on up to 128 nodes

1.0

0.67

0.49

0.33

0.16

0.00

𝑢 / 𝑢𝑤

13

GPU porting of the lattice Boltzmann method

0

20

40

60

80

100

120

AMD EPYC Rome 7402 24C

S
im

u
la

ti
o

n
 t
im

e
 i
n

 [
s
e

c
]

OpenMP (GCC) PSTL (NVHPC)

PSTL on CPUs:

• The simulation using the multi-threading option of the PSTL implementation compiled with the NVHPC compiler
is as fast as an OpenMP implementation compiled with GCC

Fig. 13: Comparison of OpenMP and parallel STL on a single node
(3D lid-driven cavity testcase)

14

GPU porting of the lattice Boltzmann method

JUWELS Booster (Nvidia A100):

• 4 CPUs per node with 1 GPU per CPU

• Grid size: 1.6 ∙ 108 cells (blue)

and 2.3 ∙ 109 cells (orange)

Selene (Nvidia A100-SXM4-80):

• 8 CPUs per node with 1 GPU per CPU

• Grid size: 6.3 ∙ 108 cells

Fig. 11: Strong scaling
on JUWELS Booster

Fig. 12: Strong scaling
on Selene

15

GPU porting of the lattice Boltzmann method

Comparison between AoS and SoA:

• AoS: Speed-up 1.71 between 2 Nvidia A-100 GPUs and 2 AMD EPYC 7742 64C

• SoA: Speed-up 5.30 between 2 Nvidia A-100 GPUs and 2 AMD EPYC 7742 64C

• 2 Nvidia A-100: Speed-up 2.81 between SoA and Aos layout

Fig. 14: Comparison of AoS and SoA based systems on multiple nodes
(3D lid-driven cavity testcase 80 ∙ 106)

0

20

40

60

80

100

120

140

Xeon Platinum 8160
24C (GCC)

AMD EPYC 7402 24C
(GCC)

AMD EPYC 7742 64C
(GCC)

Nvidia A-100 (NVHPC)S
im

u
la

ti
o
n

 t
im

e
 p

e
r

n
o

d
e

 i
n

[s
e
c
]

AoS SoA

16

GPU porting of the lattice Boltzmann method

Comparison between AoS and SoA:

• When using the AoS, the propagation step is with 73.1% the most time-consuming step of the solution step

• Using the SoA reduces the percentage share of the propagation step to 50.8%

• Since the absolute time required for the communication is equal for both simulations, its percentage share increases
from 5.2% to 15.2%

Fig. 15: Percentage share of the individual steps in the
total solution step for the AoS

Collision Propagation Boundary Condition Exchange

Fig. 16: Percentage share of the individual steps in the total
solution step for the SoA

Collision Propagation Boundary Condition Exchange

17

Exemplary setup: Nose landing gear

Flow parameters

• D = 150 mm (Wheel diameter)

• M = 0.1 (~35 m/s)

• 𝑅𝑒𝐷 = 350,000

A-Tunnel

• Open-jet closed-circuit vertical aeroacoustic wind
tunnel at Delft University of Technology

• Conducting PIV and acoustic measurements

Geometry

Experimental setup

Fig. 16: PIV setup during image acquisition.

Fig. 15: Setup at TUD’s A-Tunnel with nozzle Delft
40x70.

18

Exemplary setup: Nose landing gear

Computational domain CFD

• Domain size: (130 x 65 x 32.5) D

• Physical domain size: (80 x 40 x 20) D

• Sponge region on coarsest refinement level

Grid resolution study

Grid with medium resolution

Grid noCells/D dt [s] noCells

coarse 252 1e-06 150 million

medium 504 5e-07 200 million

fine 1008 2.5e-07 705 million

19

Exemplary setup: Nose landing gear

BlBkTl

experimental

numerical

BlBkTl + solid fairing

experimental

numerical

20

Exemplary setup: Nasal cavity

Simulation setup for the simulation of respiration:

• Reynolds number based on the pharynx‘s diameter is in the range of Re = 500 – 2,000

• A locally refined mesh with up to 200 ∙ 106 cells is used

• At the inner walls, an interpolated bounce-back scheme is set

• At the outlet, the volume flux is prescribed

• At the inlet, the equation of Saint Venant and Wantzel is used

Fig. 17: Flow field in the nasal cavity

21

Conclusion and outlook

Conclusion:

• Lattice Boltzmann solver of m-AIA is ported to GPUs using the parallel STL of C++17

• Memory layout of m-AIA was changed from an AoS to a SoA

• The GPU porting increased the performance by a factor of 1.71 compared to a HAWK node (AoS)

• SoA: the simulation is 5.3 faster on two Nvidia A-100 than on a HAWK node

• However, performance on CPUs decreased after the change

Outlook:

• Further functionalities of the LB solver will be ported

• Initialization, further boundary conditions, I/O?, ..

• Further solvers of m-AIA will be ported to GPUs

• Starting with the DG solver to run couple CFD/CAA simulation

 Improvement of the communication routine

• p.e. hiding the communication behind the solution step of a coupled solver

22

References

[1] Lintermann, A. and Meinke, M. and Schröder, W.: Zonal Flow Solver (ZFS): „A highly efficient multi- physics simulation framework“,
International Journal of Computational Fluid Dynamics 34 (2020), doi: 10.1080/10618562.2020.1742328

[2] Lintermann, A. and Schlimpert, S. and Grimmen, J.H. and Günther, C. and Meinke, M and Schröder, W.: „Massively parallel grid generation
on HPC systems“, Computer Methods in Applied Mechanics and Engineering (2014), doi:10.1016/j.cma.2014.04.009

[3] Bhatnagar, P. L. and Gross, E.P. and Krook, M.: “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and
Neutral One-Component Systems”, Physical Review 94 (3), doi:10.1103/PhysRev.94.511

