
Implementation of a lattice Boltzmann

method on GPU based HPC Systems

M. Waldmann1, G. Brito-Gadeschi2, M. Gondrum1,

M. Meinke1, W. Schröder1

1Institute of Aerodynamics and Chair of Fluid Mechanics,

RWTH Aachen University, Aachen, Germany

2NVIDIA GmbH, München, Germany

2

Motivation

Advantages of porting scientific codes to GPUs:

ÅGraphic Processing Units (GPUs) ensure very high performance for
vector and matrix calculations

Å Typical calculations performed in many physical simulations

ÅCost-performance ratio is typically lower for GPUs as for CPUs

ÅRelevance of GPUs for High-Performance Computing (HPC)
systems is continuously growing

Å In the last decade, the number of GPU accelerated systems in the top 500 list
has been constantly increasing

Å 6 of the 10th fastest supercomputers (June 2021) are accelerated by GPUs

CƛƎΦ мΥ {ǳǇŜǊŎƻƳǇǳǘŜǊ αJuwelsά
(Photo: dpa/Marius Becker)

CƛƎΦ нΥ {ǳǇŜǊŎƻƳǇǳǘŜǊ αI!²Yά
(Photo: HLRS)

3

Outline

1. Multiphysics- AerodynamischesInstitut Aachen
(m-AIA)

Å The m-AIA simulation framework

Å Grid generation using m-AIA

Å The lattice Boltzmann method in m-AIA

2. GPU porting of the lattice Boltzmann method

Å GPU-Models requirements

Å Validation and Performance

3. Exemplary simulation setups

Å Flow around a landing gear configuration

Å Flow through a human nasal cavity

4. Conclusion and outlook

4

Multiphysics - Aerodynamisches Institut Aachen

m-AIA simulation framework:

(formerly known as ZFS)

ÅSeveral solver types are implemented to address
different physical issues:

ÅFinite Volume method (FV):
Fluid mechanics

ÅDiscontinuous Galerkinmethod (DG):
Aeroacousics

ÅLevel-set method (LS):
Tracking contours of flames

ÅLattice Boltzmann method (LB):
Fluid mechanics

ÅLagrange solver:
Particle distributions

m-AIA

Fig. 3: Structure of the m-AIA simulation framework [1]

5

Multiphysics - Aerodynamisches Institut Aachen

m-AIA simulation framework:

(formerly known as ZFS)

Åm-AIA is built up modularly

ÅDirect-hybrid coupling of different
solvers with each other

ÅA wide range of physical and
numerical models

ÅAdaptive mesh refinement

ÅDynamic load balancing

m-AIA

Fig. 3: Structure of the m-AIA simulation framework [1]

6

Grid generation using m-AIA:

ÅUnstructured joint-hierarchical Cartesian grid

ÅMassively parallel grid generator [2]

ÅPartitioning based on Space-filling Hilbert curve

Å The length of the segments are determined by weights

Fig. 5: Octree structure of m-!L!Ωǎ ƎǊƛŘ [2] Fig. 6: Space-filling Hilbert
curve

Fig. 4: Strong scaling of the grid generation
on Hermit and Juqueen[2]

Multiphysics - Aerodynamisches Institut Aachen

7

Memory layout of m-AIA:

ÅCells are numbered according to their Hilbert id
and their level of refinement

ÅCell data is allocated in continuous arrays
pursuant to the Hilbert id

ÅConservative variables as well as Particle
Probability Distribution Functions(PPDFs) are
stored with an Array-of-Structure layout (AoS)

Å Object-oriented memory layout

ÅSwitching to a Structure-of-Arrays (SoA) layout
allows for better vectorization

Å More important for GPU implementation

Fig. 7: Memory layout of the lattice Boltzmann
solver of m-AIA

Multiphysics - Aerodynamisches Institut Aachen

8

The lattice Boltzmann method in m-AIA:

ÅSeveral formulations of the discrete Boltzmann equation are implemented

Å2D and 3D discretization models are implemented (for example the D3Q27)

Å f is the Particle Probability Distribution Function (PPDF)

ÅὪ is the Maxwell distribution function [3]

Propagation step Collision step

ʊ ɱὪ

Ὢὶ ʊɿὸȟὸ ɿὸ Ὢὶȟὸ Ὢ ὶȟὸ Ὢὶȟὸ

Ὢ ʍὸ ρ ɿ

Fig. 8: D3Q27 discretization model

Multiphysics - Aerodynamisches Institut Aachen

Fig. 9: Collision and propagation step

9

GPU porting of the lattice Boltzmann method

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

Tab. 1: Comparison of different GPU-Models

GPU-Model requirements:

ÅPortability: Code has to run on different HPC systems (e.g. JURECA, JUWELS, HAWK)

ÅMaintainability: Code duplication should be avoided

ÅCompatibility: The GPU-Model must be compatible with our hybrid multi-threading / multi-processing
approach

10

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

GPU porting of the lattice Boltzmann method

Tab. 1: Comparison of different GPU-Models

Advantages of the parallel Standard Template Library (STL) of C++17:

ÅThe parallel STL is implemented by all Compilers supporting C++17

ÅMulti-threading and multi-processing is supported

ÅNo code duplication is needed

ÅNo additional external libraries are needed

11

Advantages of the parallel Standard Template Library (STL) of C++17:

ÅThe parallel STL is available for all Compilers
supporting C++17

ÅMulti-threading and multi-processing is
supported

ÅNo code duplication is needed

ÅExecution policy used: par_unseq

GPU-Model Portability Maintainability Compatibility

Cuda - - -

OpenACC + + +

OpenCL + - +

OpenMP 4.0 + + +

Parallel STL + + +

Tab. 1: Comparison of different GPU-Models

GPU porting of the lattice Boltzmann method

12

Fig. 10: Velocity magnitude for a 3D lid-driven cavity

GPU porting of the lattice Boltzmann method

Validation and Performance:

ÅA 3D lid-driven cavity flow is simulated on a uniform mesh

Å Different mesh resolutions are used

Å Consisting of up to 2.3 billion cells

ÅReynolds number is set to Re = 500

ÅMach number is set to Ma = 0.1

ÅBGK-Collision operator with the D3Q27 model

Å Interpolated Bounce-Back Scheme applied at all walls

ÅSimulations are conducted on CPU and GPU based systems

Å on up to 128 nodes

1.0

0.67

0.49

0.33

0.16

0.00

ό/ ό

13

GPU porting of the lattice Boltzmann method

0

20

40

60

80

100

120

AMD EPYC Rome 7402 24C

S
im

u
la

ti
o

n
 t
im

e
 i
n

 [
s
e

c
]

OpenMP (GCC) PSTL (NVHPC)

PSTL on CPUs:

Å The simulation using the multi-threading option of the PSTL implementation compiled with the NVHPC compiler
is as fast as an OpenMPimplementation compiled with GCC

Fig. 13: Comparison of OpenMP and parallel STL on a single node
(3D lid-driven cavity testcase)

14

GPU porting of the lattice Boltzmann method

JUWELS Booster (Nvidia A100):

Å4 CPUs per node with 1 GPU per CPU

ÅGrid size: ρȢφɇρπcells (blue)

and ςȢσɇρπcells (orange)

Selene (Nvidia A100-SXM4-80):

Å8 CPUs per node with 1 GPU per CPU

ÅGrid size: φȢσɇρπcells

Fig. 11: Strong scaling
on JUWELS Booster

Fig. 12: Strong scaling
on Selene

15

GPU porting of the lattice Boltzmann method

Comparison between AoSand SoA:

Å AoS: Speed-up 1.71 between 2 NvidiaA-100 GPUs and 2 AMD EPYC 7742 64C

Å SoA: Speed-up 5.30 between 2 NvidiaA-100 GPUs and 2 AMD EPYC 7742 64C

Å 2 NvidiaA-100: Speed-up 2.81 between SoAand Aoslayout

Fig. 14: Comparison of AoSand SoAbased systems on multiple nodes
(3D lid-driven cavity testcase ψπɇρπ)

0

20

40

60

80

100

120

140

Xeon Platinum 8160
24C (GCC)

AMD EPYC 7402 24C
(GCC)

AMD EPYC 7742 64C
(GCC)

Nvidia A-100 (NVHPC)S
im

u
la

ti
o
n

 t
im

e
 p

e
r

n
o

d
e

 i
n

[s
e
c
]

AoS SoA

16

GPU porting of the lattice Boltzmann method

Comparison between AoS and SoA:

Å Whenusing the AoS, the propagationstep is with 73.1% the most time-consumingstep of the solutionstep

Å Using the SoA reducesthe percentageshareof the propagationstep to 50.8%

Å Sincethe absolute time requiredfor the communicationis equalfor both simulations, its percentageshareincreases
from 5.2% to 15.2%

Fig. 15: Percentage share of the individual steps in the
total solution step for the AoS

Collision Propagation Boundary Condition Exchange

Fig. 16: Percentage share of the individual steps in the total
solution step for the SoA

Collision Propagation Boundary Condition Exchange

17

Exemplary setup: Nose landing gear

Flow parameters

Å D = 150 mm (Wheel diameter)

Å M = 0.1 (~35 m/s)

ÅὙὩ συπȟπππ

A-Tunnel

Å Open-jet closed-circuit vertical aeroacousticwind
tunnel at Delft University of Technology

Å Conducting PIV and acoustic measurements

Geometry

Experimental setup

Fig. 16: PIV setup during image acquisition.

Fig. 15: {ŜǘǳǇ ŀǘ ¢¦5Ωǎ !-Tunnel with nozzle Delft
40x70.

18

Exemplary setup: Nose landing gear

Computational domain CFD

Å Domain size: (130 x 65 x 32.5) D

Å Physical domain size: (80 x 40 x 20) D

Å Sponge region on coarsest refinement level

Grid resolution study

Grid with medium resolution

Grid noCells/D dt [s] noCells

coarse 252 1e-06 150 million

medium 504 5e-07 200 million

fine 1008 2.5e-07 705 million

19

Exemplary setup: Nose landing gear

BlBkTl

experimental

numerical

BlBkTl + solid fairing

experimental

numerical

