
Waleed Esmail
GSI Helmholtzzentrum für Schwerionenforschung

Crash Course
In Python

Python Popularity

* Google trends

Python vs C++

print(‘Hello world!’)

#include <iostream>
using namespace std;

int main(){
cout << “Hello world! \n”;
return 0;

}

The Zen Of Python
In [1]: import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

Data: Types, Values, …/01 Choose With If/02

Loops/03 Data Structures/04

Table Of Contents

Functions/05 Classes & Objects/06

Be Pythonista/07

INDEX.HTML

Data Types
/01

Data Types I
In Python DATA are objects. An object is a chunk of data that contains:
1. A type
2. A unique ID
3. A value
4. A reference count

Type Example Is Mutable ?

bool True, False no

int 1, 1000, 545477 no

float 3.14, 5.4e6 no

complex 3j, 5 + 9j no

str “hello”, ‘world’ no

list [1,2,88] yes

tuple (4.2, 9) no

dict {“myKey”: 6} yes

Data Types II

In Python if you want to know the type of anything, you can use the built-in method type():

In [1]: x = 1

In [2]: type(x)
Out [2]: <class ‘int’>

In [3]: x = "hello world"

In [4]: type(x)
Out [4]: <class ‘str’>

Alternatively, you can use isinstance(type):

In [5]: isinstance(x, str)
Out [5]: True

Data Types III

Immutable Objects

In [1]: x = 6
In [2]: y = x
In [3]: y = 11
In [4]: x
Out [4]: 6

Mutable Objects

In [1]: x = [6,4,22]
In [1]: y = x
In [4]: y[0] = -1
In [4]: x
Out [4]: [-1,4,22]

Data Types IV
A Python string is a sequence of characters are objects

In [1]: x = ‘hello world’
In [2]: y = “hello world”

• You can also use three single quotes (‘’’) or three double quotes (“””)
• Python string indexing works similar to other languages [start:end:step]

In [3]: x[0]
Out [3]: ‘h’

In [4]: x[0:4]
Out [4]: ‘hell’

• You can format string with % or f-strings

In [3]: print(“success percentage %.3f”%98.134343)
Out [3]: success percentage 98.134

In [3]: print(“success percentage {} % and failure {} %”.format(98.134343, 100-98.134343))
Out [3]: success percentage 98.134343 % and failure 1.865657 %

Comments

In Python, comments begin with the # character

In [1]: # this is a comment
In [2]: y = "hello world"

• You can also use three single quotes (‘’’) or three double quotes (“””)

In [10]: “””
...: this is a big comment
...: “””

Exercise

INDEX.HTML

Choose with
if

/02

Control Statement if I
In Python, indentation is used to mark off the sections of code, it define a program’s structure

In [1]: x = input(‘Please enter a number ‘)
Please enter a number

In [2]: x = int(x)

In [3]: if x>0:
...: print (“The value of {} is greater than 0”.format(x))

Out [3]: The value of 10 is greater than 0

In [4]: x = int(input(‘Please enter a number ‘))

In [5]: if x>0:
...: print (“The value of {} is greater than 0”.format(x))

Taking input from the user

e.g. 10

Converting to integer

Be Pythonista: one-liner

e.g. -1

4 space indentation

Control Statement if II
In [6]: x = int(input(‘Please enter a number ‘))
In [7]: if x>0:

...: print (“The value of {} is greater than 0”.format(x))
else:

print (“The value of {} is smaller than 0”.format(x))

Out [7]: The value of -1 is smaller than 0

In [8]: x = int(input(‘Please enter a number ‘))
In [9]: if x>0:

...: print (“The value of {} is greater than 0”.format(x))
else:

print (“The value of {} is smaller than 0”.format(x))

In [10]: if x>0:
...: print (“The value of {} is greater than 0”.format(x))
...: elif x<0:
...: print (“The value of {} is smaller than 0”.format(x))
...: else:
...: print (“The value of {} is 0”.format(x)

This time let’s enter 0

Some Python Operators
• You can do multiple comparisons with (or) and (and) operators

In [1]: x, y, z = True, True, False
In [2]: (x or y) and z
Out [2]: ??

In [3]: (x and y) or z
Out [3]: ??

• Python membership operator (in)

In [1]: l = [1,3,66,89,0]
In [2]: 0 in l
Out [2]: True

• Python identity operators (is) and (is not)

In [1]: x, y = 10, 20
In [2]: x is y
Out [2]: False

Simultaneous assignment

Loops
/03

Loops
Python gives us two choices for reptation (while) and (for)

1. while loop: countdown example

In [1]: counter = 5
In [2]: while counter >= 0:

...: print (counter, end=‘’)

...: counter -= 1
Out [2]: 5 4 3 2 1 0

2. for loop

In [1]: for i in 5,4,3,2,1,0:
...: print (i, end=‘’)

Out [1]: 5 4 3 2 1 0

In [1]: for i in range(5, 0, -1):
...: print (i, end=‘’)

Out [1]: 5 4 3 2 1

range(start, end, step)

You can always skip with (continue) and cancel with (break)

Use for together with tqdm تقدم

• tqdm is a Python external library to create simple progress bars
• Usage: tqdm(iterable)

In [1]: from tqdm import tqdm
In [2]: for x in tqdm(range(10000000)):

...: pass

tqdm (self, iterable,

Exercise

Data
Structures

/04

Data Structures: Lists

A data structure is a way of organizing data so it can be accessed efficiently
In Python there are: lists, tuples, dictionaries and sets

• lists are used to store multiple items in a single variable
• lists are mutable

In [1]: empty_list = []
In [2]: another_empty_list = list()
In [3]: weekdays = [‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’]
In [3]: randomness = [‘hello’, 2, 11.2e8, dict()]

Data Structures: List Operations
In [1]: a = list(range(10))

1. Slicing/indexing: a[start:end:step]
In [1]: a[0:6:2]
In [2]: a[-1]

2. Add items: append(item), insert(loc, item), extend(list)
In [1]: a.append(10)
In [2]: a.insert(2, -1)
In [3]: a.extend(list(range(10, 20)))

3. Delete items: del, remove(item)
In [1]: del a[0]
In [2]: a.remove(1)

4. Reorder items (sorts the list itself, in place): sort(list)
In [1]: a.sort()

Iterate over many lists simultaneously

In [1]: days = [‘Monday’, ‘Tuesday’, ‘Wednesday’]
In [2]: fruits = [‘banana’, ‘orange’, ‘peach’]
In [3]: drinks = [‘coffee’, ‘tea’, ‘juice’]
In [4]: for day, fruit, drink in zip(days, fruits, drinks):

...: print(day, “: drink”, drink, “- eat”, fruit)

tqdm (self, iterable,

Data Structures: Dictionaries
• Dictionaries consists of key and value, also called associative arrays or hash maps
• The order of items doesn’t matter
• Items are selected by unique keys
• Keys must be immutable.

In [1]: empty_dictionary = {}
In [2]: empty_dictionary = dict()

• Usage: dict_name = {“key”: value}

In [3]: python_creator = {“firts”: “Guido”, “middle”: “van”, “last”: “Rossum” }
In [4]: python_creator = dict(firts: “Guido”, middle: “van”, last: “Rossum”)

How to get an item: dict_name[key]

In [5]: python_creator[“last”]
Out [5]: Rossum

How to Iterate over Dictionaries

In [1]: for key, value in python_creator.items():
...: print(key, value)

In [2]: for key in python_creator.keys():
...: print(key)

In [3]: for value in python_creator.values():
...: print(value)

Data Structures: Sets
A set is a collection of unique unordered items

In [1]: empty_set = set()

• You can convert a list to a set:

In [2]: a = [1,1,4,56,9,0,9]
In [3]: set(a)
Out [3]: {0, 1, 4, 9, 56}

• Operations on sets: Intersection (&), Union (|), difference (-), subset (<=), ...

An example from track reconstruction:

In [1]: reco_track = set(hit_ids)
In [2]: true_track = set(hit_ids)
In [3]: true_track & reco_track
Out [3]: what hits_ids in both reco and true

Functions
/05

Functions I:
• A function is a named piece of code. It can take any input parameters and return any number of

outputs
• Define and call

In [1]: def do_something():
...: pass

• Positional arguments

In [1]: def simple_calculator(x, y):
...: return {“sum” :x+y, “difference”:x-y, “multiplication”:x*y, ”division“:x/y}

In [2]: simple_calculator(1.1, 23.0)

• Keyword arguments

In [3]: simple_calculator(x=1.1, y=23.0)
In [4]: simple_calculator(y=1.1, x=23.0)

Explode positional/keyword arguments
• Python doesn’t have pointers

In [1]: def print_args(*args):
...: print(“Arguments: “, args)

In [2]: print_args(1,”text”, 1.4e8, dict(), tuple(), set())
Out [2]: Arguments: (1, 'text', 140000000.0, {}, (), set())

• Python print() function is an obvious application
• In addition, you can use two asterisks (**) to group keyword arguments into a dictionary

In [1]: def print_kwargs(**kwargs):
...: print(“Arguments: “, kwargs)

In [2]: print_kwargs(1,”text”, 1.4e8, dict(), tuple(), set())

In [3]: print_kwargs(a=1, b=”text”, c=1.4e8, d=dict(), e=tuple(), f=set())
Out [2]: {'a': 1, 'b': 'text', 'c': 140000000.0, 'd': {}, 'e': (), 'f': set()}

Functions II: Docstrings

You can write documentation for any Python function or class

In [1]: def simple_calculator(x, y):
‘’’
This function implements a very simple calculator
Parameters:

x (float): the first number
y (float): the second number

Returns:
(dict): dictionary of the sum, difference, multiplication and division

‘’’
return {“sum” :x+y, “difference”:x-y, “multiplication”:x*y, ”division“:x/y}

• Ask for help for any function or class

In [2]: help(simple_calculator)

Anonymous Functions 𝚲

• A Python lambda function is an anonymous function expressed as a single statement

lambda <arguments> : <return expression>

In [1]: f = lambda x,y: {“sum” :x+y, “difference”:x-y, “multiplication”:x*y, “división”:x/y}

Exercise

Classes
& Objects

/06

Classes & Objects: class Definition

• An object is a custom data structure containing both data (attributes) and functions (methods)
• Objects are instances of classes

In [1]: class useless_class:
...: pass

In [2]: useless_object = useless_class()

• You can assign attributes or methods from outside the class definition

In [3]: useless_object.var = “hello world”
In [4]: useless_object.func = lambda x,y: {“sum” :x+y, “difference”:x-y, \

“multiplication”:x*y, “división”:x/y}

In [1]: useless_object.func(1,1)
Out [2]: {'sum': 2, 'difference': 0, 'multiplication': 1, 'division': 1.0}

Classes & Objects: __init__
• To assign attributes and methods from inside the class, you need a constructor __init__

In [1]: class useful_class:
def __init__(self):

self.welcome = “hello world”
self.f = lambda x,y: {“sum” :x+y, “difference”:x-y, \

“multiplication”:x*y, “división”:x/y}

• You can pass arguments to the constructor

In [2]: class useful_class:
def __init__(self, name):

self.welcome = “hello ”+name
self.f = lambda x,y: {“sum” :x+y, “difference”:x-y, \

“multiplication”:x*y, “división”:x/y}

In [3]: useful_object = useful_class()
Out [3]: TypeError: __init__() missing 1 required positional argument: 'name’

In [4]: useful_object = useful_class(“Waleed”)

self argument in Python is similar to this pointer in C++

Classes & Objects: Inheritance

• Inheritance is creating a new class from an existing class, but with some additions or changes

In [1]: class polygon:
def __init__(self, num_of_sides):

self.n = num_of_sides
def calc_area(self):

pass

In [2]: class triangle(polygon):
def __init__(self):

super(). __init__ (3)
def calc_area(self, a, b, c):

calculate the semi-perimeter
s = (a + b + c) / 2
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
return area

Call parent constructor

Override calc_area method

Classes & Objects: Privacy
• You can hide attributes and methods to be accessed from outside the class using (__)

In [1]: class useless_class:
def __init__(self, attribute):

self.__hidden_attribute = attribute

def __hidden_method(self):
pass

In [2]: useless_object = useless_class()
In [2]: useless_object.__hidden_attribute
Out [3]: AttributeError: ‘useless_object’ object has no attribute ‘__hidden_attribute’

• Always use getters (getter methods) to get hidden attributes
In [1]: class useless_class:

def __init__(self, attribute):
self.__hidden_attribute = attribute

def get_hidden_attribute(self):
return self.__hidden_attribute

When to use classes

• Remember the zen of Python “simple is better than complex”

• Use the simplest solution to the problem. A dictionary, list, or tuple is simpler,
smaller, and faster than a module, which is usually simpler than a class.

namedtuples

• namedtuples are similar to dict, you can access a variable by a name

• An example from physics

In [1]: from collections import namedtuple
In [2]: Graph = namedtuple('Graph', ['X', 'Ri', 'Ro', 'y’])
In [3]: G = Graph(X, Ri, Ro, y)

• X is node feature
• Ri, Ro are adjacency matrices
• y is the label vector

Be
Pythonista

/07

One-liners: List comprehension

• List comprehension helps you quickly create and modify lists
• Usage: [expression + context]

In [1]: a = [x for x in range(10)]

In [2]: a = []
In [3]: for x in range(10):

a.append(x)

• List comprehension can contain if statements
In [4]: customers = [('John', 240000), ('Alice', 120000), (‘Anna', 1100000), ('Zach', 44000)]
In [5]: # your high-value customers earning >$1M
In [6]: whales = [x for x,y in customers if y>1000000]
In [7]: whales
Out [7]: [‘Anna’]

One-liners: map() function

• map() function that takes as input arguments a function object f and a sequence s
• The map() function then applies the function f on each element in the sequence s.

➢ Problem: given a list of strings, your task is to create a new list of tuples, each consisting
of a Boolean value and the original string. The Boolean value indicates whether the string
'anonymous' appears in the original string

In [1]: # the list of strings
In [2]: txt = ['lambda functions are anonymous functions.’,

'anonymous functions dont have a name.’,
'functions are objects in Python.']

One-liners: map() function

• map() function that takes as input arguments a function object f and a sequence s
• The map() function then applies the function f on each element in the sequence s.

➢ Problem: given a list of strings, your task is to create a new list of tuples, each consisting
of a Boolean value and the original string. The Boolean value indicates whether the string
'anonymous' appears in the original string

In [1]: # the list of strings
In [2]: txt = ['lambda functions are anonymous functions.’,

'anonymous functions dont have a name.’,
'functions are objects in Python.’]

In [3]: output = list(map(lambda s: (True, s) if 'anonymous' in s else (False, s), txt))
Out [3]: output
[(True, 'lambda functions are anonymous functions.'),
(True, 'anonymous functions dont have a name.'),
(False, 'functions are objects in Python.')]

Decorators:
• A decorator is a function that takes one function as input and returns another function
• Function inside function (inner functions) is perfectly normal in Python

In [1]: def add_numbers(x,y):
return x+y

• Modify the behaviour of this functions without modifying the code (decorate it)

In [2]: def square_it(f):
def new_func(*args, **kwargs):

result = f(*args, **kwargs)
return result**2

return new_func

In [3]: @square
def add_numbers(x,y):

return x+y

In [4]: add_numbers(2,2)
Out [4]: 16

Questions:

1. Write a program to count Even and Odd numbers in a list using lambda
e.g., list1 = [10, 21, 4, 45, 66, 93, 1]

2. Write a program to create a recursive function to calculate the sum of numbers from
0 to 10.

3. How to flatten all sublists of a list, no matter how deeply nested using Python ?
e.g., lol = [1, 2, [3,4,5], [6,[7,8,9], []]]

Resources:

1. Introducing Python: Modern Computing in Simple Packages, Bill Lubanovic
2. Python One-liners: Write Concise, Eloquent Python Like A Professional, Christian Mayer
3. https://realpython.com/
4. Programming exercises with applications in physics, Morten Hjorth-Jensen

https://realpython.com/

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

/THANKS!
/DO YOU HAVE ANY QUESTIONS?
w.esmail@fz-juelich.de
waleed.physics@gmail.com

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:w.esmail@fz-juelich.de
mailto:waleed.physics@gmail.com

