Lecture 4. Deep learning architectures

Bayesian Statistical Learning



Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final
evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning),
partially labelled (semi-supervised learning) etc.
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Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
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The model: Input mp
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Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating
the weights of the model

/exactly what we did previously when minimising Kullback-Leibler divergence(maximising free energy), but the
model is way more complicated/



Neural Networks with dense layers

Each layer is essentially a linear
transformation z = Wx + b

X Input layer, z next layer

W weight matrix, b - bias

Classical network: all weights are single
values




Neural Networks with dense layers

Weight matrices W and biases b are in fact

distributions, which are being learned

by means of Variational Bayes and

then one can sample the outputs from them

Jupyter notebook bayesian_neural_networks_wine



Variational Autoencoder

General autoencoder: unsupervised (no labels),
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back to the original dimension using decoder.

The aim is to reconstruct the original input.
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back to the original dimension using decoder.

The aim is to reconstruct the original input.

Variational autoencoder: instead of outputting single values onto the hidden layer it outputs a

probability distribution, thereby forcing the decoder not to take a deterministic values as input but
rather to sample from the provided distributions



Variational autoencoder

~ Output
q(z|X) — z p(X|z) » X

2=2,F € where € ~ N(0,1) (good old reparametrisation trick), hence Z, and

Input
X

Z, are deterministic layers

Loss = reconstruction loss + KL(g(z| X) | | p(z)), where p(z) ~ N(0,1)

Very similar set-up to stochastic variational Bayes! Jupyter notebook var_mod



Normalising flows

The major difference compared to VAE:
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- Given a prior probability density p.(z) (e.g. normally distributed) and resulting distribution p,(x) and
bijective f
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Normalising flows

The major difference compared to VAE:

Output

- Uses invertible functions to map onto the lnPUt
A Inverse f1(z2) e

latent space 7

- For that z has to be the same shape as X

- Given a prior probability density p.(z) (e.g. normally distributed) and resulting distribution p,(x) and bijective f

df (x)

dx

|, hence

JPZ(Z)dZ = JPX(X)dx =1,p(x) =p,(2) I— | =p,(f(x)) |
df(X)

log p,(x) = log p.(z) + log det

Visually: Z~Pe(2) *P%) Jupyter notebook flows



