Lecture 4. Deep learning architectures

Bayesian Statistical Learning

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final
evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning),
partially labelled (semi-supervised learning) etc.

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation
of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially
labelled (semi-supervised learning) etc.

Series of transformations

The model: Input »I

T J9AeT
¢ 19AeT
¢ J9Ae]

» Output

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
supervised learning) etc.

Series of transformations

» Output

The model: Input M)

T J9Ae]
C JoAe]
¢ JoAe

Training: backpropagation, i.e. minimising the given loss function using gradient descent method ->
updating the weights of the model

Ingredients of the Deep Learning framework. Reminder

Data: training set (train the model), validation set (compare models), test set (final evaluation of the model)

Data can be labelled (supervised learning), unlabelled (unsupervised learning), partially labelled (semi-
supervised learning) etc.

Series of transformations

The model: Input mp

» Output

T J9Ae]
C JoAe]
€ J9AeT

Training: backpropagation, i.e. minimising the given loss function using gradient descent method -> updating
the weights of the model

/exactly what we did previously when minimising Kullback-Leibler divergence(maximising free energy), but the
model is way more complicated/

Neural Networks with dense layers

Each layer is essentially a linear
transformation z = Wx + b

X Input layer, z next layer

W weight matrix, b - bias

Classical network: all weights are single
values

Neural Networks with dense layers

Weight matrices W and biases b are in fact

distributions, which are being learned

by means of Variational Bayes and

then one can sample the outputs from them

Jupyter notebook bayesian_neural_networks_wine

Variational Autoencoder

General autoencoder: unsupervised (no labels),

Lower dimension

5

iInput features are projected onto a lower dimensional

>
>
(@)
o
Q.
>
-

;

19p023p

hidden layer (bottleneck) via encoder, and then transformed Input

»Output

J9Ae| usppiH

back to the original dimension using decoder.

The aim is to reconstruct the original input.

Variational Autoencoder

General autoencoder: unsupervised (no labels),

Lower dimension

5

iInput features are projected onto a lower dimensional

>
>
(@)
o
Q.
>
-

;

19p023p

hidden layer (bottleneck) via encoder, and then transformed Input

»Output

19Ae| usppiH

back to the original dimension using decoder.

The aim is to reconstruct the original input.

Variational autoencoder: instead of outputting single values onto the hidden layer it outputs a

probability distribution, thereby forcing the decoder not to take a deterministic values as input but
rather to sample from the provided distributions

Variational autoencoder

~ Output
q(z|X) — z p(X|z) » X

2=2,F € where € ~ N(0,1) (good old reparametrisation trick), hence Z, and

Input
X

Z, are deterministic layers

Loss = reconstruction loss + KL(g(z| X) | | p(z)), where p(z) ~ N(0,1)

Very similar set-up to stochastic variational Bayes! Jupyter notebook var_mod

Normalising flows

The major difference compared to VAE:

Output
X

- Uses invertible functions to map onto the '“;"t

Inverse f1(z) »

Z

latent space 7

- For that z has to be the same shape as X

- Given a prior probability density p.(z) (e.g. normally distributed) and resulting distribution p,(x) and
bijective f

Normalising flows

The major difference compared to VAE:

Output

- Uses invertible functions to map onto the Input ;

X

7 Inverse f1(z) »

latent space 7

- For that z has to be the same shape as X

- Given a prior probability density pz(z) (e.g. normally distributed) and resulting distribution p (x)
and bijective f

Jpz(z)dz = J p.()dx =1

Normalising flows

The major difference compared to VAE:

Input

- Uses invertible functions to map onto the ¥

Flow f(X) Inverse f1(z)

- Given a prior probability density pz(z) (e.g. normally distributed) and resulting distribution p (x)
and bijective f

latent space 7

- For that z has to be the same shape as X

_ dz f()
p,(dz = |px)dx=1,p(x) =p,(2)] —\ = p.(f(x)) | |, hence

dx

Output
X

Normalising flows

The major difference compared to VAE:

- Uses invertible functions to map onto the Input
X

Output

Flow f(X) 7 Inverse f1(z)

latent space 7

- For that z has to be the same shape as X

- Given a prior probability density p_(z) (e.g. normally distributed) and resulting distribution p, (x) and bijective f

dz
JPZ(Z)dZ = Jpx(x)dx =1, p,(x) = p,(2) IE\ = p.(f(x)) | f() |, hence

df(x))
dx

log p.(x) = log p.(z) + log det (

Normalising flows

The major difference compared to VAE:

Output

- Uses invertible functions to map onto the lnPUt
A Inverse f1(z2) e

latent space 7

- For that z has to be the same shape as X

- Given a prior probability density p.(z) (e.g. normally distributed) and resulting distribution p,(x) and bijective f

df (x)

dx

|, hence

JPZ(Z)dZ = JPX(X)dx =1,p(x) =p,(2) I— | =p,(f(x)) |
df(X)

log p,(x) = log p.(z) + log det

Visually: Z~Pe(2) *P%) Jupyter notebook flows

